A Emgieer MoBob kePefieomr

FANUC CNC Custom Macros

A Emgieer MoBob kePefieomr

Fanuc CNC
Custom
Macros

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

A Emgieer MoBob kePefieomr

FANUC CNC Custom Macros

Fanuc CNC
Custom
Macros

Programming Resources for Fanuc Custom Macro B Users

Peter Smid

Industrial Press, Inc.
200 Madison Avenue
New York, NY 10016-4078, USA

http://www.industrialpress.com

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

Industrial Press Inc.

200 Madison Avenue

New York, New York 10016-4078

Copyright © 2005. Printed in the United States of America

All rights reserved

This book or parts thereof may not be reproduced,

stored in a retrieval system or transmitted in any form without the
permission of the publisher

Cover Design: Janet Romano
Managing Editor: John Carleo

10 9 8 7 6 5 4 3 2 1

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

To
Joan, Michael and Michelle

Thank you for everything

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

Acknowledgments

In this first edition of the Fanuc Custom Macros, the author would like to express much
deserved and sincere thanks and repeated appreciation to Peter Eigler for never turning
away from a challenge and always being able to provide working solution to a problem.
Many thanks are also reserved for Eugene Chishow, who can rightly claim many macros
bearing his name.

My family has always provided a great support to me - thanks to you all.

In the handbook, there are references to several manufacturers, software developers
and some trade names. It is only fair to acknowledge their names:

a FANUC and CUSTOM MACRO or USER MACRO or MACRO B are registered trademarks
of Fujitsu-Fanuc, Japan

O GE FANUC is a registered trademark of GE Fanuc Automation, Inc.,
Charlottesville, VA, USA

O MASTERCAM is the registered trademark of CNC Software Inc.,
Tolland, CT, USA

O WINDOWS is a registered trademarks of Microsoft, Inc.,
Redmond, WA, USA

O FADAL, OKUMA, MAKINO, YASNAC, MITSUBISHI, MELDAS,
MAZAK, MAZATROL - are also trade names that appear in the handbook

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

About the Author

Peter Smid, the author of the best-selling CNC Programming Handbook and a number
of other publications, is a professional consultant, educator and speaker, with many
years of practical, hands-on experience, in the industrial and educational fields. During
his career, he has gathered an extensive experience with CNC and CAD/CAM applica-
tions on all levels. He consults to manufacturing industry and educational institutions on
practical use of Computerized Numerical Control technology, CNC part programming,
CAD/CAM, advanced machining, tooling, setup, and many other related fields. His com-
prehensive industrial background in CNC programming, machining and company ori-
ented training has assisted several hundred companies to benefit from his wide-ranging
knowledge.

Mr. Smid’s long time association with advanced manufacturing companies and CNC
machinery vendors, as well as his affiliation with a number of Community and Technical
College industrial technology programs and machine shop skills training, have enabled
him to broaden his professional and consulting skills in the areas of CNC and CAD/CAM
training, computer applications and needs analysis, software evaluation, system bench
marking, programming, hardware selection, software customization, and operations
management.

Over the years, Mr. Smid has developed and delivered hundreds of customized educa-
tional programs to thousands of instructors and students at colleges and universities
across the United States, Canada and Europe, as well as to a large number of manufac-
turing companies and private sector organizations and individuals.

He has actively participated in many industrial trade shows, conferences, workshops
and various seminars, including submission of papers, delivering presentations and a
number of speaking engagements to professional organizations. He is also the author of
many magazine columns and articles as well as in-house publications on the subject of
CNC and CAD/CAM. During his many years as a professional trainer in the CNC indus-
trial and educational field, he has developed tens of thousands of pages of high quality
training materials.

Peter Smid is currently completing a new book CNC Programming Techniques, sched-
uled for release by Industrial Press, Inc., in the Spring of 2005.

The author welcomes comments, suggestions and other input from educators,
students and industrial users

You can e-mail him from the Fanuc CNC Custom Macros page at www.industrialpress.com

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

Disclaimer

Industrial Press (the Publisher) and Peter Smid (the Author) provide
this publication and the included CD files in the form of ‘as is', without
warranty of any kind, either expressed or implied, including, but not
limited to, the implied warranties of merchantability and fitness for
a particular purpose. The author may make improvements or changes in
this publication and/or the included CD files, or in the program examples
used in this publication, at any time and without notice.

Neither the Publisher nor the Author assumes any responsibility
for any error that may appear in the publication or the CD files.

Use of names of companies and products in this publication does not reflect
an endorsement by either those companies or by the Publisher or the Author.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

Preface

For more than twenty five years, control systems for CNC machines have been de-
signed with many more features than necessary just to process a manually written part
program. A whole group of conversational programming systems has been offered by
several control manufacturers for many years. From the original Fanuc FAPT system to
the modern on-machine programming available from companies such as Mazak and
their Mazatrol system, this method has proven very successful for CNC lathes, and to a
smaller degree, to CNC milling systems as well.

While most conversational programming offers a great number of benefits for a variety
of suitable parts, it does not offer the flexibility of most CAD/CAM systems, within the
area of so called CAM programming. The majority of CAM systems offer off-machine
CNC programming using graphical toolpath generation combined with many features
to produce programs of excellent quality. For this reason, they have become the most
popular method of part program generation.

With all the benefits and some inevitable disadvantages, the traditional programming
methods offer thousands of CNC users the choice between the three common options -
manual programming, on-machine conversational type of programming, or a CAM soft-
ware, in order to develop the part program. Program development using macros offer
an additional method, complementing - not competing with - the other methods.

The purpose of this handbook is not to compare between the part program develop-
ment methods, but to bring attention to the type of part program development that has
not been used as often as it should - macros (known as Custom Macros or User Macros).

CNC program development using macros does not replace any other programming
method. In fact, it belongs to the category of manual programming - and as an extension
- it offers much higher level of sophistication. This handbook is all about macros - what
they are and how to develop them and how to use them. It offers many do's and don'ts,
and it covers all the popular Fanuc control systems. Although there are other controls
offering macros, this handbook covers Fanuc macros exclusively. Macros for different
controls share the common approach and mainly differ in their syntax. Learning macros
for one control will become a benefit when learning a macro for a different control. Mac-
ros present an extremely wide and rich field of programming tools that a professional
CNC programmer or CNC technical person can explore in great depth.

This handbook has been designed as a training and reference text that can be usedin a
production environment - not as a production oriented text that can be used for training.
In no way the handbook is intended to replace manuals supplied with the machine tool
or the control system - they are vital part of the learning process.

Peter Smid, January 2005

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

A Emgieer MoBob kePefieomr

FANUC CNC Custom Macros

1- FANUC MACROS

TABLE OF CONTENTS

-—

General Introduction

Review of G-codes, M- codes and Subprograms

System Parameters
Data Setting
Custom Macros
Probing Applications .
Overall View . .
Macro Programming
Macro Option Check . ..
What is a Macro Programming? .
Typical Features .
Main Program with Macro Features
Using Macros . .
Groups of Similar Parts
Offset Control.
Custom Fixed Cycles.
Nonstandard Tool Motions
Special G-codes and M-codes
Alarm and Message Generation .
Replacing Control Options

Hiding and Protecting Macro Programs .

Probing and Gauging.
Various Shortcuts and Ut|||t|es

OO OWWOWOWWMOWMWOLONO GO RARRER,DWWWNNN -

Skills Requirements 10
2 - BASIC PROGRAM CODES 1
Preparatory Commands . 11
Default Settings . 11
Modal Values 12
Programming Format 12
Miscellaneous Functions . 12
Programming Format 12
M-codes with a Motion . 12
Custom M-codes 12
Reference Tables 13
G-codes for Milling. 13
Three-Digit G-codes. 15
M-codes for Milling 16
G-codes for Turning 16
M-codes for Turning 19
Standard Program Codes. 20
Optional Program Codes . 20
Xi

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

Xii Table of Contents
3 - REVIEW OF SUBPROGRAMS 21
Subprogram Example - Mill . 21
Rules of Subprograms 25
Subprogram Repetition 27
Subprogram Nesting . 27
Subprogram Documentation 29
Subprograms vs. Macros. 30
Unique Features. 30
CNC Lathe Applications 31
Subprogram Development . 32
4 - SYSTEM PARAMETERS 33
What are Parameters ? 33
Saving Parameters. 34
Backing Up Parameters . 34
Parameter Identification . 35
Numbering of Parameters . 35
Parameter Classification . 35
Parameters Grouping 36
Parameter Display Screen 37
Parameter Data Types. 37
Bit-Type Data Type . 37
Relationship of Parameters . 40
Byte Data Type . 41
Word Data Type. 42
2-Word Data Type 42
Axis Data Type . . 43
Important Observations. 44
Binary Numbers. o 45
Setting and Changing Parameters . 46
Protection of Parameters 46
Battery Backup . 46
Changing Parameters a7
System Defaults a7
Default Values Settings . 48

5 - DATA SETTING 49
Input of Offsets . 49
Data Setting Command 50
Coordinate Mode 50
Absolute Mode . 50
Incremental Mode 50
Work Offsets. e 51
Standard Work Offset Input. 51
Additional Work Offset Input 52
External Work Offset Input . 52

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

Table of Contents xiii
Offset Memory Types - Milling . b3
Geometry Offset . . e X
Wear Offset b3
Which Offset to Update? 7
Memory TypeA. bb
Memory TypeB. b6
Memory Type C. . Y
Memory Type and Macros e - V4
Offset Memory Types - Turning. b8
Adjusting OffsetValues . b9
Absolute Mode . B
Incremental Mode . b9
Tool Offset ProgramEntry . 60
L-Address . . e 60
G10 Offset Data Settlngs M|II|ng Examples -
Valid Input Range N - ¥4
Lathe Offsets. 862
P-Offset Number . 63
Tip NumberQ 63
G10 Offset Data Settlngs Turnlng Examples 7
Data Setting CheckinMDI . 6b
Programmable Parameter Entry . 6b
Modal G10 Command 66
N-address in G10 L0 Mode 67
P-address in G10 L0 Mode 67
R-address in G10 L0 Mode 67
Program Portability . . . e < V4
Setting Machine Axes to Zero e 4 ¢
Bit Type Parameter Example 170
Differences Between Control Models 72
Effect of Block Numbers 172
Block Skip . . . e 4
6 - MACRO STRUCTURE 73
BasicTools . 73
Variables. . . Lt
Functions and Constants e 24
Logical Functions . 174
Defining and Calling Macros. 75
Macro Definition Y 4.
MacroCall . 75
Arguments Lo
Visual Representation 178
Macro Program Numbers .1
Macro Program Protection. 179
Setting Definitions . . A
Program Numbers - Range 00001 to 07999 - 0]
Program Numbers - Range O8000to 08999 80
Program Numbers - Range 09000to 09999 @81
Program Numbers - Range 09000 to 09049 . . . - V4
Difference Between the O8000 and 09000 Program Numbers I - V4

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

Xiv Table of Contents
7 - CONCEPT OF VARIABLES 83
Types of Macro Variables . 83
VariablesinMacros . 84
Definition of Variables 8
Calculator Analogy . 4
VariableData . 8
Variable Declaration . 8
Real Numbers and Integers. 8
Variable as an Expression 86
Usage of Variables. 86
Decimal PointUsage 87
Metric and English Units 88
Least Increment. . e < 11
Positive and Negative Varlables e = 1°)
Syntax Errors . 9
Restrictions . . . (0]
Custom Machine Features P © VA
8 - ASSIGNING VARIABLES 93
Local Variables . 9
Defining Variables . 93
Clearing Local Variables 9
Assigning Local Variables . 9
Assignment List 1 - Method1 9
Assignment List 2 - Method2 9%
Missing Addresses 97
Disallowed Addresses 98
Simple and Modal MacroCalls . 98
Selection of Variables 9
Main Program and Local Variables 10
Local Variables and NestinglLevels 105
Common Variables . . . e 0
Volatile and Nonvolatile IVIemory Groups 106
Input Range of Variables . 107
Out-of-Range Values07
Calculator Analogy. . . e (v
Set Variable Name Function SETVN e [}
Protection of Common Variables. 108
9 - MACRO FUNCTIONS 109
Function Groups e o]
Definition of Variables ReV|S|ted e A e
Referencing Variables 10
Vacant or Empty Variables . . .
Axis Motion Commands and Null Varlables e
Terminology 12
Arithmetic Functions. 113
Nesting. . e K
Arithmetic Operatlons and Vacant Varlables e I)
Division by Zero . 115

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

Table of Contents XV
Trigonometric Functions . 116
Conversion to Decimal Degrees 116
Available Functions 116
Rounding Functions . . 117
Rounding to a Fixed Number of Decnmal Places . 119
FUP and FIX Functions 121
Miscellaneous Functions 122
SQRT and ABS Functions . 122
LN, EXP and ADP Functions 124
Logical Functions . 124
Boolean Functions . 124
Binary Numbers Functions 125
Boolean and Binary Examples. 125
Conversion Functions 126
Evaluation of Functions - SpeC|aI Test 126
Order of Function Evaluation . 128
Approach to Practical Applications 129
Using Local Variables . 129
Using Common Variables . 133
Speeds and Feeds Calculation 134
10 - SYSTEM VARIABLES 137
Identifying System Variables . 137
System Variables Groups 138
Read and Write Variables . 138
Displaying System Variables . 138
System Variables for Fanuc Series 0 . . 139
Fanuc Model 0 Compared to Other Models 140
System Variables for Fanuc Series 10/11/15 . 140
System Variables for Fanuc Series 16/18/21 . 141
Organization of System Variables. 144
Resetting Program Zero. 145
11 - TOOL OFFSET VARIABLES 147
System Variables and Tool Offsets 147
Tool Offset Memory Groups 148
Tool Offset Memory - Type A . 148
Tool Offset Memory - Type B . 149
Tool Offset Memory - Type C . 149
Tool Offset Variables - Fanuc 0 Controls 150
Milling Control FS-OM . 150
Turning Control - FS-0T . 151
Tool Offset Variables - FS 10/11/15/16/18/21 for M|II|ng 152
Assignments for 200 Offsets or Less - Memory Type A . 152
Assignments for 200 Offsets or Less - Memory Type B . 153
Assignments for 200 Offsets or Less - Memory Type C . . 154
Assignments for More than 200 Offsets - Memory Type A . 155
Assignments for More Than 200 Offsets - Memory Type B . 156
Assignments for More than 200 Offsets - Memory Type C 157

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

XVi Table of Contents
Tool Offset Variables - FS 10/11/15/16/18/21 for Turning 158
Tool Setting 158
Assignments for 64 Of'fsets or Less Memory Type A e <3¢
Assignments for 64 Offsets or Less - Memory TypeB 160
Assignments for More than 64 Offsets - Memory Type A 161
Assignments for More than 64 Offsets - Memory TypeB 162
12 - MODAL DATA 163
System Variables for Modal Commands 163
Fanuc 0/16/18/21 Modal Information 163
Fanuc 10/11/15 Modal Information 163
Preceding and ExecutingBlocks 164
Modal G-codes . 164
Fanuc 0/16/18/21 . 165
Fanuc 10/11/15. 66
Saving and RestoringData. 167
Saving Modal Data. 67
Restoring ModalData 168
Other Modal Functions. 168
Fanuc 0/16/18/21 . 169
Fanuc 10/11/15. . . . e 0]
13 - BRANCHES AND LOOPS 171
Decision Making in Macros. 1M
IF Function . . . e
Conditional Branchlng e
Unconditional Branching 173
IF-THEN Option . . P
Single Conditional Expressmns e 45
Combined Conditional Expressions 176
ConceptoflLoops.o
Single Process.o
Multiple Processo
WHILE Loop Structure .79
Single Level Nesting Loop. 179
Double Level Loop. 18
Triple LevelLoop . 180
General Considerations3
Restrictions of the WHILE Loop . . e ko
Conditional Expressions and Null Varlables e £ <
Formula Based Macro - SineCurve 184
Clearing Common Variables . 186
14 - ALARMS AND TIMERS 187
AlarmsinMacros.08
Alarm Number. 187
Alarm Message 87
Alarm Format . . Y £ 12
Embedding Alarm in a Macro P o1
Resetting an Alarm . . T £ 0]
Message Variable - Warning, Not an Alarm T £ [0

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

Table of Contents XVii
Timers in Macros . 191
Time Information 191
Timing an Event 191
Dwell as a Macro 192
15 - AXIS POSITION DATA 193
Axis Position Terms . 193
Position Information . 194
16 - AUTO MODE OPERATIONS 195
Controlling Automatic Operations 195
Single Block Control 195
M-S-T Functions Control 196
Feedhold, Feedrate, and Exact Check Control 197
Example of Special Tapping Operatlon 198
Systems Settings . . 199
Mirror Image Status Check . . 199
Interpreting System Variable #3007 . 200
Controlling the Number of Machined Parts. 202
17 - EDITING MACROS 203
Editing Units 203
Program Comments . . 203
Abbreviations of Macro Functlons 204
18 - PARAMETRIC PROGRAMMING 205
What is a Parametric Programming ? 205
Variable Data 205
Benefits of Parametric Programmlng 206
When to Program Parametrically . 206
Planned Approach to Macro Development. 207
19 - FAMILY OF SIMILAR PARTS 209
Macro Development in Depth - Location Pin 209
Drawing Evaluation 210
Objective of the Macro . . . 210
Part Setup, Tooling and Machlnlng Method . 210
Drawing Sketch 211
Standard Program . 211
Identify Variable Data . 212
Creating Arguments 215
Using Variables 216
Writing the Macro . 217
Final Version . 218
Macro Improvements . 220
20 - MACROS FOR MACHINING 221
Angular Hole Pattern - Version 1 . 221
Variable Data for Angular Hole Pattern 223
Angular Hole Pattern - Version 2 . 224

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

xviii Table of Contents
Frame Hole Pattern . .]
Variable Data for Frame Hole Pattern e 227
Bolt Hole Circle Pattern . . . e e 229
Variable Data for Bolt Hole C|rcIe Pattern e 23
Arc Hole Pattern . . A K
Variable Data for Arc Hole Pattern A 7
Circular Pocket Roughing . . e e e 236
Variable Data for Circular Pocket Roughlng e e e 237
Amount of Stock Left 239
Circular Pocket Finishing 2 10
Variable Data for Circular Pocket F|n|sh|ng .2
Slot Machining Macro . . . Vi
Variable Data for Slot Machlnmg . 1)
Circular Groove with Multiple Depth. 247
From Subprograms to Macros 248
Macro Version Development 249
Rectangular Pocket Finishing . 251
21 - CUSTOM CYCLES 255
SpecialCycles. 255
Options Available . 256
G-code MacroCall . 2566
M-functions MacroCall . 258
G13 Circle Cutting Cycle. 2060
Macro Call - Normal . . A ¢ V4
Macro Call - as a Special Cycle 1 ¢ ¥
Detailed Evaluation of OffsetValue 264
Counterboring Applicaton 266
22 - EXTERNAL OUTPUT 267
Port Open and Port Close Commands 267
Data Output Functions . . . e . e .. oo 268
BPRNT Function Descrlptlon e 268
DPRNT Function Description 269
Parameter Settings - Fanuc 10/11/12/15. 269
Metric vs. Inch Format. . . e 270
Parameter Settings - Fanuc 16/18/21 . |
Structure of External Output Functions 272
Output Examples . 273
Blank Output Line . 274
Columns Formatting 274
DPRNT Practical Examples. 274
Dateo 2714
Time 274
Work Offset . 274

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

Table of Contents Xix
23 - PROBING WITH MACROS 275
What is Probing?. 215
Touch Probes . . v
Probing Technology Today - £)
Probe Calibration . . Y
Feedrate and Probing Accuracy Y
Probing Devices on CNC Machines 278
In-Process Gauging Benefits 278
Types of Probes . 278
Probe Size L L. .. L.0219
Probe Selection Criteria. 279
Machined Part . . . A £
Control System Capabllltles 2 < (0]
Expected Tolerances . . 2 < (0]
Additional and Optional Features 22 {0)
Associated Costs . . 2210
CNC Machine Probe Technology i <10
Optical Signal Transmission 28
Inductive Signal Transmission 282
Radio Signal Transmission 282
In-Process Gauging 282
Features to be Measured . 283
Center Location Measurement 284
Measuring External or Internal Width. 286
Measuring Depth . . . e e e 287
Measuring External Dlameter 2 A
Measuring Internal Diameter 287
Measuring Angles. 288
Changing of SetValues 288
Calibration Devices . . e e e 288
Calibrating device - Type 1 288
Calibrating device - Type2 288
Checking the Calibration Device 289
Centering Macro Example . 289
Probe Length Calibration .29
Skip Command G31 A O K
24 - ADDITIONAL RESOURCES 295
Limitations During Macro Execution. 29
Single Block Setting 2%
Block Number Search 2%
Block Skip Function 2%
MDI Operation. 29
EditMode . 29
ControlReset . 29
Feedhold Switch . 29

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

XX Table of Contents
Knowledge for Macro Programming. 297
General Skills . . . e e 297
Manual Programming Experlence. S 298
Math Applications . 298
Setup Practices . 298
Machining Practices . . A
Control and Machine Operatlon e ..o ..o o ... 298
Complementary Resources. o..29
Industrial Press, Inc. 299
Internet. . . e 299
Practical Programmlng Approach e e e s 299
Macro Programming Tips e (00
25 - MACRO COURSE OUTLINE 301
Macro Course Outline . 30
Closing Comments . 306
Index e 1 6
27 - WHAT'S ON THE CD-ROM ? 313

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

1 FANUC MACROS

This handbook has been developed as a resource material for CNC programming at its highest
level, using Fanuc and compatible Computer Numerical Control systems (CNC systems). Tech-
niques described in the handbook are still part of the manual programming process, in the sense
that no external CAD/CAM software or hardware is required. Although the main topic of this
handbook is application of Fanuc Custom Macros in CNC programming (known as Fanuc Custom
Macro B), several related topics have been added, mainly for coherence and comparison, but
mainly as a refresher of some basic CNC programming skills required as a prerequisite.

The subject matters deal with several major topics, and the handbook is organized in the sug-
gested order of learning. More experienced users can start at any section within the handbook:

(d General Introduction

Review of G-codes and M-codes
Review of subprograms

System parameters

Data setting

Custom macros

Probing applications

I W W Iy Ry

Numerous examples and sample programs are used throughout the handbook. Their purpose is
to serve not only as practical applications of the techniques explained, but - for many of them - as
the basis for ready-to-run macro programs.

Although all the topics covered in the handbook are critical, they are discussed here for the sin-
gle purpose of learning one subject, commonly known as Custom Macros, User Macros, Fanuc
Macros, Macro B, or - just Macros. Several non-Fanuc controls also offer their version of mac-
ros, for example Fadal and Okuma, but only Fanuc macros are covered in this handbook.

General Introduction

This is the general introduction to the subject of macros. Its purpose is to make you aware of
what macros are, what related subjects are important, and to identify several other helpful items to
get you started in this important, exiting and often underestimated, field of CNC programming.

Knowledge of macros is becoming more and more essential, as companies large and small look
towards more efficient ways of CNC program development, particularly for certain type of parts.
Although CAD/CAM programming systems have become very popular and are on the rise, they
do not and cannot always replace macro programming, for various reasons. Macros often serve as
a special solution to special requirements.

The following brief descriptions provide some ideas of major subjects covered in the handbook.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

Chapter 1

Review of G-codes, M-codes and Subprograms

It may appear that any discussion of preparatory commands (G-codes), and miscellaneous func-
tions (M-codes), as well as subprogram topics is too basic and should not be included in a
handbook on custom macro programming. Before you get interested in macros or actually work
with them, there are certain prerequisites of knowledge and experience. CNC program structure
is composed of a number of features, such as positioning data (machine axes), cutting data (speed
and feeds), offsets, comments, cycles, etc. Developing a CNC program requires knowledge and
discipline. Before getting into the field of macro programming, you should be well experienced in
the usage of the preparatory commands - the G-codes, and the miscellaneous functions - the
M-codes. You should also understand the structure and development of subprograms, including
multiple level nesting applications. These topics form the corner stone of macro development.
They are included in this handbook strictly for a review, as a refresher material and for reference
only, in a somewhat condensed form.

System Parameters

In a little play on words, you may say that parameters control the control. That means, parame-
ters are part of the control system and make it function in a harmonious way with the machine
tool. Good knowledge of only a few parameters are necessary for an average CNC user, and not
all control parameters are necessary for macro program development. Parameters do, however,
form the environment in which macros are developed and operate. Both terms parameters and
system parameters are frequently used throughout the handbook, and so is the term parametric
programming. Although both terms are covered in this handbook and they are linguistically con-
nected, they do not share the same meaning in CNC programming.

Parameters or System Parameters are settings of the control system. They can be thought of as
various registers that store machine and program data. On the other hand, Parametric Program-
ming is a method of programming often known as the programming the family of similar parts.

Data Setting

In order for a CNC machine to execute a program correctly, it requires more than just the part
setup on the machine. We are dealing with technology called numerical control, therefore with in-
terpretation of numbers - we need many settings of data in numeric form. The three offset groups
required for a complete machine setup are the largest part of this topic. They are:

(1 Offsets relating to work position ... work offsets (G54, G55, G56, G57, G58, G59)
1 Offsets relating to tool length ... tool length offsets (G43, G44, G49)
(1 Offsets relating to tool radius ... tool radius offsets (G40, G41, G42)

Various offset data can be set through the program with the G10 preparatory command, without
using any macros at all. Offset data can also be changed through the macros for even more
flexibility - in this case, the system parameters and data setting techniques are important prerequi-
sites. Keep in mind that various control systems in the Fanuc family may require a slightly differ-
ent format of programming, even when the final results are the same. It is important to know each
control in the shop as well as the machine tool using this control. Do not assume that a macro de-
veloped for one control model will work with another control model.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

FANUC MACROS 3

Throughout the handbook, there will be reminders that any changes to the control system
will affect its operation. It is extremely important that all changes to parameters or
any stored data are done by qualified and authorized professionals !

Custom Macros

The subject of Custom Macros - or the User Macros - is the major topic of this handbook. In the
order of suggested learning, you will discover many valuable programming methods and tech-
niques, procedures, tips, and suggestions of how to develop a macro program from the scratch.
Many practical examples are included to help you to start or to be used as a reference later.

With increasing work experience, you will be able to make macros faster, macros more power-
ful and more efficient. You will be able to develop macros for various machine tool activities you
would have never thought of before. Macros may take some time to develop properly, but it is a
time well invested.

Probing Applications

Macros are the backbone for any automatic probing and gauging on the CNC machine (and
many other automated procedures). Although some users may want to distinguish between the two
terms, we will use them interchangeably for the same purpose. Probing allows an in-process in-
spection of the machined part, including offsets corrections and many other adjustments. Probing
has no real equivalent in standard programming.

Macro programming for probing devices requires more than just the mandatory availability of
macro option in the control system - it also requires additional hardware installed on the machine
tool, plus the necessary software interfaces. Many manufacturers of probing devices may offer
their own generic macros, but you still need to develop custom probing macros for specific pur-
poses, as they relate to your work.

Overall View

Except the brief refresher topics, the last few topics may not be the easiest subject to learn for
the beginner, but all topics are very logical in their nature. Also, they are presented here in the or-
der you should learn them. What you need as a good background is the knowledge of the basic
CNC programming, the syntax of word address format, understanding of the program structure
(flow), and at least the basic operation of the CNC machine tool on a production level. Detailed
knowledge (as opposed to a superficial one) of the G-codes and the M-codes is imperative, and for
macro development, the knowledge of subprograms and their structure, including nesting levels,
is equally imperative.

To learn the advanced programming methods efficiently, you almost must have an access to a
CNC control that has the required macro option installed. Learning how to develop macros is like
learning how to swim. A great number of books will describe the many techniques of swimming,
but you learn the most only when you learn in the water. There are no shortcuts to success - you
have to understand what is going on, and you have to try it - and that may take a little time.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

4 Chapter 1

Macro Programming

In the handbook, the short term macro will be used, referring to an optional feature of Fanuc
control systems called the Custom Macro or the User Macro. Typically, a letter B is added to the
description, such as Custom Macro B or User Macro B. That is just an indication of a level more
advanced from the original version. Virtually all Fanuc controls now offer the optional Macro B
version, even if it is not specified directly in the control description. Other control systems offer a
similar method of flexible programming and the logic and general approach you learn here for the
Fanuc control can be adapted for control systems other than Fanuc (Fadal, Okuma, etc.). As the
name suggests, custom macros are available to the CNC user, to serve as an additional tool for
unique and specific applications of a machine tool.

Keep in mind that macros are optional feature of the control system, and unless your company
has purchased this option, you will have no access to them. However, it is easy to have them acti-
vated by a qualified Fanuc technician on request, and upon a payment, of course.

Macro Option Check

Do I have the macro option installed? This is a common question of many users of CNC equip-
ment. Even if you have absolutely no idea about macros at this time, it is very important to know
whether the control system you are using has the macro option installed before you write a macro
program. There is very a simple way to find out, and no special program is necessary to do that.

Set the control to MDI mode (Manual Data Input) and type in the following command:
#101 = 1

When you press the Cycle Start button, one of two possibilities will happen. If the control sys-
tem accepts the command without issuing an alarm or error condition, it means the macro option
is installed. On the other hand, if the control system returns an alarm (error) message (usually in-
dicating a syntax error or address not found), the macro option is not installed on that control.
Make sure to enter the data as shown in the example, including the # symbol that identifies the
number that follows as a variable number 101 with an assigned value of 1. Other commands can
be entered as well, but the one shown is a harmless way to make the macro availability check.

What is a Macro Programming?

In a few words, macro programming is a part programming technique that combines standard
CNC programming methods with additional control features for more power and flexibility.
Macro for all CNC systems is the closest method of programming to a true language based pro-
gramming, using the CNC system directly. Generally available high-level languages, such as
C+ + ™or Visual Basic™, and many of their forms and derivatives, are used by computer software
professionals everywhere to develop sophisticated software for various computer applications.
Fanuc macro is not a language itself by a strict definition - it is a special purpose software used for
CNC machines only. However, a CNC macro program uses many features found in high level
computer languages.

A ETGieer NOBob ks Pefie

FANU

FANUC CNC Custom Macros

C MACROS 5

Typical Features

Typical features found in Fanuc macros are:

(W]

I Ty Ny Ny Ny

Arithmetic and algebraic calculations
Trigonometric calculations

Variable data storage

Logical operations

Branching

Looping

Error detection

Alarm generation

Input and Output

... and many other features

A macro program resembles a standard CNC program to a certain extent, but includes many
features not found in regular programming. Essentially, a macro program is structured as a
regular subprogram. It is stored under its own program number (O-), and it is called by the main
program or by another macro, using a G-code (typically G65). However, in a very simple form,
macro features can be used in a single program as well, without the macro call command.

Main Program with Macro Features

Here is a simple example of a normal part program that cuts four slots (roughing cuts only):

N1
N2
N3
N4
N5
N6
N7
N8
N9
N10
N1l
N12
N13
N14
N15
N16
N17
N18
N19
N20
N21

Note the repetitive use of the two feedrates:

G21

G17 G40 G80
G90 GO0 G54 X25.0 Y30.0 S1200 MO3 X
G43 Z2.0 HO1l MO8
GO0l Z-5.0 F100.0 + + i
Y80.0 F200.0 (SLOT 1) ‘ ‘ ‘ ‘
GO0 Z2.0
X36.0

GO0l zZ-5.0 F100.0

¥30.0 F200.0 (SLOT 2)
GO0 22.0

X47.0

GO0l z-5.0 F100.0

Y80.0 F200.0 (SLOT 3)
GO0 22.0

X58.0 |

G0l z-5.0 F100.0 Y30.0 ‘ ‘
¥30.0 F200.0 (SLOT 4) + + + +
GO0 Z2.0 M09 1 \j’e 3 \j’ﬂ
G28 z2.0 MO5
M30

50

X25.0

SLOT DEPTH =5 mm

Figure 1

F100.0 for plunging and F200.0 for slot cutting. Simple job to illustrate feedrate as a macro function

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

6 Chapter 1

In the program, each feedrate appears once per slot. The more slots, the more programmed
feedrate. If you need to change one or both feedrates in the program, the change has to be done for
each slot individually. With many slots, this could be a time consuming task. A macro feature
used in the program greatly simplifies the job. The key is to define the two feedrates as variables,
at the beginning of the program. A variable definition is preceded by the # symbol and used in-
stead of the 'real' value:

N1 G21

N2 G17 G40 G80

N3 #1=100.0 (PLUNGING FEEDRATE)
N4 #2=200.0 (CUTTING FEEDRATE)

N5 G90 GO0 G54 X25.0 ¥30.0 s1200 MO03

N6 G43 Z2.0 HO1l MO8

N7 GO1 Z-5.0 F#1

N8 Y80.0 F#2 (SLOT 1)
N9 GO0 z22.0

N10 X36.0

N1l GOl z-5.0 F#1

N12 Y30.0 F#2 (SLOT 2)
N13 GO0 z2.0

N14 X47.0
N15 GO1
N16 Y80.
N17 GOO

Z-5.
0
Z
N18 X58.0
Z
0

F#
2.0

F#1
(SLOT 3)

N19 GO1 z-5.
N20 Y¥30.0 F#
N21 GO0 z2.0 M09
N22 G28 z2.0 MO5
N23 M30

0 F#l1
2 (SLOT 4)

By changing the variable #1, all plunging feedrates will be changed automatically, and by
changing the variable #2, all cutting feedrates will be changed automatically. This is just a small
example of the power of macros - it should provide at least basic appreciation of their benefits.

Another example of this technique will be described in Chapter 8, with additional details.

Using Macros

Knowing what macros are and what they are capable of will help you to use them in an effective
and profitable way. There are many areas where macros can be an essential part of CNC program-
ming, whether a manual method or a CAD/CAM method is used. If used wisely, macros, as a
programming tool can coexist with any CAD/CAM system - but they do not replace it - they serve
as just another method to achieve a certain goal. Macros can be used for general CNC machining,
but also more and more they are used to control modern manufacturing equipment and its many
automated features, such as material handling, tool breakage inspection, special cycles, etc.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

FANUC MACROS 7

Certain control features are normally accessed by a skilled CNC operator, typically done during
the job setup. Characteristic in this category are the common offsets (for work position, tool
length and radius). The CNC operator makes the appropriate measurements and enters the offsets
into the control system. Macros allow the programmer to automate both the measurement and the
input of offset values. Special measuring equipment (also known as probing or gauging equip-
ment) is required for such activities, but many others do not require any additional equipment.

Another very common application of macros is a group of parts that are similar in some re-
spects, for example, their basic shape. All parts in such a group can use a single master program
(in the form of a macro) that can be called with different data input values for each group member.

The following list highlights some of the most common applications of macros:

Groups of similar parts

Offset control

Custom fixed cycles

Nonstandard tool motions

Special G-codes and M-codes

Alarm and message generation
Replacing control options

Hiding and protecting macro programs
Probing and gauging

Various shortcuts and utilities

ool ddodod

Groups of Similar Parts

In the old days (1970's) of off-machine language programming (using programming languages
such as Compact II™, Split™, APT™, ADAPT™, and many others), it was common to program
parts that are similar in shape (meaning ‘similar, but not exactly the same’), and also similar in the
general machining process. For example, a bolt circle of equally spaced holes is a common ma-
chining operation for many machine shops and without macros, each bolt circle has to be calcu-
lated individually for the XY coordinates and the relating cutting data. Yet, the same formulas are
used over and over again, each time a new bolt circle is required. Once there is a suitable bolt cir-
cle macro available, it can be called repeatedly by supplying only the data that change. The calcu-
lations of the bolt circle hole positions and the appropriate machining will be determined by this
data. Other hole patterns, such as arc, row, grid and frame patterns are also good candidates for a
macro (see the Parametric Programming section of the handbook). Developing a macro will usu-
ally require more time than an individual part program, but this time is well invested. Once a
macro exists and is used, it eliminates any other programming - all that is needed is the change of
the parameters (for example, speeds, feedrates, dimensions, depths, etc.).

Many other repetitive machining tasks and similar toolpaths can also benefit from proper appli-
cation of macro programs. The group of similar parts is often called the family of similar parts or,
more generically, parametric programming, where the user supplies parameters (changeable
values) to an existing macro. However, a true parametric programming is not restricted to the
similar parts only. Many machining operations, such as pocketing, are very common. Rectangu-
lar and circular pockets, with straight and tapered walls can benefit from a macro application. Do
not confuse parametric programming with system parameters, also described in the handbook.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

Chapter 1

Offset Control
Programmable offsets used for CNC work are of three kinds:

(d Work offset - G54 to G59 commands (standard) + G54.1 P1to G54.1 P48 commands (option)
(d Tool length offset - using the G43 or G44 commands, usually with an H-address
(1 Cutter radius offset - using the G41 or G42 commands, usually with a D-address

In addition, there are different versions of the available offsets, such as geometry and wear, ex-
ternal or common offset, and three different types of control memory. Using macros, offsets can
be entered, cleared, checked, adjusted and manipulated through the program, without interference
from the CNC machine operator. Some offset changes require a probing device, others can be
changed arbitrarily, depending on the work situation. Knowledge of offsets and the way they in-
teract with the CNC program is absolutely essential for most macro applications.

Custom Fixed Cycles

Fixed cycles have been part of programming for a long time. They are used every day and they
work very well. Occasionally, there is a need for a special cycle that will do something unusual,
less common, yet important for a certain application. For example, there are fixed cycles that
feed-in and feed-out of a hole. The feedrate is always the same for both directions. You may de-
velop a new cycle, where the cutting feedrate will change in one direction only. Another example
is a cycle that can peck drill with a decreasing peck depth of each subsequent cut. G83 and G73
cycles cannot do that. Many special cycles can be developed, and not just for machining holes.

Nonstandard Tool Motions

The three common tool motions, rapid, linear and circular, are suitable for most CNC jobs.
Other motion types are often needed, yet impossible to achieve without special control software.
They include curves based on mathematical formulas, such as a straight helix, tapering helix, pa-
rabola, hyperbola, sine curve, etc. Custom macros can be developed to accurately simulate such a
toolpath, using a mathematical formula and resulting in a very complex tool motion calculation.

Special G-codes and M-codes

Manufacturers of special equipment may want to control certain operations by a G-code or an
M-code. These will be nonstandard functions and can be developed with a macro. Later in the
handbook, there is a circular pocket cycle macro using a call G13 - a new Fanuc G-code that can
be used in everyday programming (already available on some non-Fanuc controls).

Alarm and Message Generation

Macros can also be used to detect a number of erroneous conditions (faults) and allow the part
programmer to communicate the fault to the CNC operator in the form of an alarm or an error
condition. Alarm (error) can have its own number and a brief description of the cause. Instead of
alarms indicating the possible cause of a fault, instructional messages to the machine operator can
be generated, describing what is happening or what activity needs to be done.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

FANUC MACROS 9

Replacing Control Options

Fanuc controls offer many special features that are only available as an option. Typical optional
features are Scaling Function, Coordinate System Rotation, Polar Coordinates, Additional Off-
sets, etc. With macros, you can develop a program performing exactly the same function what
these options offer, without the extra cost, which often is quite high.

Hiding and Protecting Macro Programs

There will be macro programs that you create, than use them over and over again. After all, that
is the main reason for their development in the first place. If something goes wrong with the
macro in the control system, for example, an accidental deletion, its loss would cause a significant
problem to the production process at that point. Macros can be protected within the control
software, so they cannot be accidentally deleted or changed without forced additional steps.
Macros with sensitive contents can also be hidden from the directory display.

Probing and Gauging

Probing and gauging are a very important areas of using custom macros. A section on probing,
with examples, is also a significant part of this handbook. Using probes and similar devices,
custom macros can be utilized as an ‘on-machine inspection station’, using a method commonly
known as in-process gauging. Measured values (actual values) can be compared with the expected
values (drawing values), and various offsets can be automatically adjusted.

Custom macros used in probing can be applied to different types of drawing specifications, such
as corner locations, center locations, angles, diameters, depths, widths, automatic centering, bor-
ing measurements, and many others.

Various Shortcuts and Utilities

Many small utility programs can also be written into a macro form, to make the programming
job (and the operator's job) easier and safer. Utilities are usually small programs that do not actu-
ally machine a part, but are used for certain common operations. Typical applications may include
safe tool call, table or pallet indexing, management of tool life for unmanned operations, detection
of worn out or broken tools, redefining the program zero (origin) for uneven castings, boring jaws
on a lathe, counting the parts already machined, automating part-off operations on a CNC lathe,
automatic tool changing, and many other possibilities. All these programs share a common feature
- they are very effective shortcuts for repeatable activities that occur in CNC programming.

The field of macro applications is very extensive. In addition to the many possibilities already
described, macros can be used to check spindle speeds, feedrates, and tool numbers, they can con-
trol the I/O (input and output) of data, check and register the active G-code command in a particu-
lar group, and disable the feedhold feature, spindle and feedrate overrides and a single block
operation. The applications are virtually endless, and depend not only on your particular needs but
your skills as well.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

10 Chapter 1

Skills Requirements

Like any human endeavor, a successful custom macro programming requires certain skills, and
not only in the field of machine shop work and related technology. When a macro programming is
compared to a conventional CNC programming, all the skills required for the standard CNC pro-
gramming will be needed, plus many others.

For the standard CNC programming, the programmer in a typical machine shop environment
must understand all the items already mentioned, plus many new ones. Work experience is a defi-
nite asset, and all issues relating to skills can be summed up into the following areas:

(1 CNC machines and controls - operation and programming

Machining skills - how to machine a part

Basic mathematics skills - calculations, formulas

Program structure development skills - convenience and consistency
Offsets and Compensations applications skills - various adjustments
Fixed cycles in depth - how they work, in detail

Subprograms in depth, including multi nesting applications

System parameters, their purpose and functions

| I W Iy Iy Ry W

To become a successful CNC custom macro programmer, a good working knowledge of a high
level language is not absolutely necessary, but it is of a primary benefit. Languages mentioned
earlier, such as various forms of Visual Basic™, C++ ™, the old Pascal™, Delphi™, Lisp™ - in-
cluding AutoLISP™ from the makers of Autocad (the most popular CAD software for personal
computers), and many others, offer excellent platform for learning.

One skill that is very important to understanding macros, is the deep knowledge of the Prepara-
tory Commands (G-codes) and the Miscellaneous Functions (M-codes) in a part program (both are
reviewed in this handbook). Keep in mind that G-codes are reasonably consistent between differ-
ent Fanuc control models (and compatible controls), although a lot of them are special options.
M-codes will vary a great deal between different Fanuc controlled machined tools, depending on
the machine tool manufacturer. The chapter covering this topic lists the M-codes for reference
only, and knowledge of all M-codes (and G-codes) on a particular CNC machine tool is absolutely
essential. Another very important background skill, also reviewed here, is the knowledge of
subprograms in depth. Subprograms are the first logical step into the macro development.

Finally, a list of skills that are not exclusively confined to the CNC programming area but that
are also very useful are, for example:

(1 Problem solving skills
Analytical skills
Logical thinking
Organizational skills
Patience (a lot of it)

I Wy T

There are no simple solutions, but one advice may be useful - always try to work towards a par-
ticular goal. Establish a specific practical project, evaluate it, then work toward its 100% comple-
tion. Test, test again and then, test one more time. Just do not give up!

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

BASIC PROGRAM CODES

In CNC part programming, all address codes (letters in the program) are equally important and
should not be underestimated, but there are two addresses that stand out as very important to
macro programming. The G-codes and the M-codes are the major feature of every CNC program
and the key to successful macro program development. In macros, they are used the same way as
in standard programs, but also gain additional attributes. It is important to know these codes for
every CNC machine and control system equipped with macros. In this chapter, all these important
codes in a CNC program are reviewed. The chapter also includes a typical reference list for both
types of the basic G and M programming codes.

Preparatory Commands

The G-codes in a CNC program are called the preparatory commands. The purpose of the pre-
paratory commands is to prepare - or to preset - the control system to a certain mode of operation.
For example, the CNC program can use English or metric units of measurement. The control sys-
tem has to be preset to that mode before any dimensional value appears in the program. Normally,
we use the G20 command to select English units (inches) and the G21 command to select metric
units (millimeters). Other common examples of preparatory commands include the fype of tool
motion (GO0, GO1, G02, G03), absolute and incremental mode (G90, G91), and many others.
The key to programming any G-codes is that the desired mode has to be selected before it is used.
If you do not select the mode in the program, the control system has many default settings.

Default Settings

When the power to the control system is turned on, there was no program that could influence
the internal settings of the control system. That means the built-in settings, the default settings,
will take effect. Although most controls have the same defaults, it is important that you know
them for each control individually, because they can be permanently changed by the vendor or the
user. Typical default settings are identified with the ¢ (diamond) symbol in the reference tables.
Defaults of several G-codes may be set by the vendor or the user, and may differ from the typical
list. They are GO0/G01, G17/G18/G19, G90/G91, and several others. To set a different de-
fault, you have to use system parameters, described in a separate chapter.

Be very cautious when making permanent changes to the control system settings !

An incorrect parameter setting can permanently damage
the control system and / or the machine tool !

1

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

12 Chapter 2

Modal Values

Preparatory commands can be either modal or non-modal. Modal commands are programmed
only once, and remain in their selected mode until changed or canceled by another command.
Most - but not all - of the G-codes are modal. The typical non-modal commands are G04, GO9
and the machine zero return commands G27-G30. These are often called 'one shot' commands.
Some preparatory commands remain in effect, even if the power of the control has been turned off.
The most typical is the G20 or G21 command that selects the units mode.

Programming Format

Any number of G-codes from different groups (see table) can be programmed in a single block,
providing they do not conflict with each other. If a conflicting G-code appears in the same block,
the one specified later will be effective - Fanuc system will not cause an error condition!

Miscellaneous Functions

The M-codes in a CNC program are called the Miscellaneous Functions. Most of them control
the hardware functions of the machine tool, for example MO8 turns the coolant pump motor on
and M09 turns it off. They also control the program flow, for example MO1 is an optional pro-
gram stop, M30 is the program end, etc. Many M-codes are designed by the manufacturer of the
machine tool, and are unique to that machine only - they are nonstandard and can only be found in
the machine tool manual.

Programming Format

Normally, only one M-code can be used in any block. Some latest controls (Fanuc 16/18/21)
now allow up to three M-codes in a single block, providing they do not conflict with each other. If
a conflicting M-code appears in the same block or too many M-codes are in the block, the system
will return an error condition.

M-codes with a Motion

If an M-code is programmed together with an axis motion, it is important to know when the
M-code takes effect. For example, MO3 will start simultaneously with the motion, but MO5 will
take effect after the motion has been completed. Every machine tool manual should include infor-
mation on how the M-codes behave when programmed with a motion.

Custom M-codes

The M-codes are the least standard from one control or machine to another, even from the same
manufacturer. Only a small number of M-codes can claim to be standard. Machine tool manufac-
turers assign an M-code to any unique option the machine tool may have. Some manufacturers
may assign hundreds of unique M-codes for a particularly complex machine tool. Always know
the special M-codes for every machine you work with.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

BASIC PROGRAM CODES 13

Reference Tables

The following tables list the typical preparatory commands (G-codes) and miscellaneous func-
tions (M-codes). Both milling and turning applications are included and the typical default prepa-
ratory commands are marked with the ¢ symbol (subject to change by the vendor or the user).

In case of discrepancy between the included tables and the CNC machine tool manual,
always use the codes listed by the machine tool manufacturer

G-codes for Milling

The following table is a fairly comprehensive reference listing of all standard as well as the most
common G-codes (preparatory commands) used for CNC milling programs (CNC milling ma-
chines and machining centers). All inter-dependent G-codes belong to the same group number and
are modal, unless they belong to the Group 00, which identifies all non-modal commands:

G-code Group Description
GO00 01 Rapid positioning mode
G01 01 Linear interpolation mode ¢
G02 01 Circular interpolation mode - clockwise direction
G03 01 Circular interpolation mode - counterclockwise direction
G04 00 Dwell function (programmed as a separate block)
G07 00 Hypothetical axis interpolation
G09 00 Exact stop check for one block
G10 00 Data setting mode (programmable data input)
G11 00 Data setting mode cancel
G15 17 Polar coordinate mode cancel ¢
G16 17 Polar coordinate mode
G17 02 XY plane designation ¢
G18 02 ZX plane designation
G19 02 YZ plane designation
G20 06 English units of input
G21 06 Metric units of input
G22 04 Stored stroke check ON ¢
G23 04 Stored stroke check OFF
G25 25 Spindle speed fluctuation detection ON
G26 25 Spindle speed fluctuation detection OFF ¢

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

14 Chapter 2

G-code Group Description

G27 00 Machine zero return position check

G28 00 Machine zero return - primary reference point

G29 00 Return from machine zero

G30 00 Machine zero return - secondary reference point

G31 00 Skip function

G33 01 Threading function

G37 00 Tool length automatic measurement

G40 07 Cutter radius compensation mode cancel ¢

G41 07 Cutter radius compensation mode to the left

G42 07 Cutter radius compensation mode to the right

G43 08 Tool length offset - positive

G44 08 Tool length offset - negative

G45 00 Position compensation - single increase

G46 00 Position compensation - single decrease

G47 00 Position compensation - double increase

G48 00 Position compensation - double decrease

G49 08 Tool length offset cancel ¢

G50 11 Scaling function mode cancel ¢

G51 11 Scaling function mode

G52 00 Local coordinate system setting

G53 00 Machine coordinate system setting

G54 14 Work coordinate offset / ¢
G54.1 14 Additional work coordinate offset

G55 14 Work coordinate offset 2

G56 14 Work coordinate offset 3

G57 14 Work coordinate offset 4

G58 14 Work coordinate offset 5

G59 14 Work coordinate offset 6

G60 00 Single direction positioning

G61 15 Exact stop mode

G62 15 Automatic corner override mode

G63 15 Tapping mode

G64 15 Cutting mode ¢

G65 00 Custom macro call

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

BASIC PROGRAM CODES 15
G-code Group Description
G66 12 Custom macro modal call
G67 12 Custom macro modal call cancel ¢
G68 16 Coordinate system rotation mode
G69 16 Coordinate system rotation mode cancel ¢
G73 09 High speed deep hole drilling cycle (peck drilling)
G74 09 Left hand tapping cycle
G76 09 Precision boring cycle
G380 09 Fixed cycle cancel ¢
G81 09 Drilling cycle
G82 09 Spot drilling cycle
G83 09 Deep hole drilling cycle (peck drilling)
G84 09 Right hand tapping cycle
G85 09 Boring cycle
G86 09 Boring cycle
G87 09 Back boring cycle
G88 09 Boring cycle
G89 09 Boring cycle
G90 03 Absolute input of motion values
GI1 03 Incremental input of motion values ¢
G92 00 Coordinate system setting (tool position register)
G94 05 Feedrate per minute - in/min or mm/min
G95 05 Feedrate per revolution - in/rev or mm/rev
G98 10 Retract motion to the initial level in a fixed cycle ¢
G99 10 Retract motion to R-level in a fixed cycle

One G-code in a modal group replaces another G-code from the same group

Three-Digit G-codes

Some machines and control systems also provide G-codes that have three digits instead of the
standard two digits, for example, G102. This is a good indication that the machine manufacturer
has included some special time-saving cycles (internal macros). These are not standard codes and
usually vary from one machine to another. As you will learn later, a macro can also be called by a
G-code other than the standard G65.

A ETGieer NOBob ks Pefie

16

FANUC CNC Custom Macros

Chapter 2

M-codes for Milling

The following table is a fairly comprehensive reference listing of the most typical and common
M-codes (miscellaneous functions) used for CNC milling programs (CNC milling machines and
machining centers). Only a very few M-codes are industry standard, so check the manual of your
machine for details and usage:

M-code Description
Moo Mandatory program stop
Mo1 Optional program stop
Mo02 End of program (usually no reset and rewind)
Mo3 Spindle rotation normal - clockwise
Mo4 Spindle rotation reverse - counterclockwise
Mo05 Spindle rotation stop
Mo06 Automatic tool change (ATC)
Mo7 Coolant mist ON (machine option)
Mo8 Coolant pump motor ON
M09 Coolant pump motor OFF
M19 Programmable spindle orientation
M30 End of program with reset and rewind
M48 Feedrate override cancel OFF - feedrate override switch effective
M49 Feedrate override cancel ON - feedrate override switch ineffective
M60 Automatic pallet change (A4PC)
M78 B-axis clamp (non-standard)
M79 B-axis unclamp (non-standard)
M98 Subprogram call
M99 Subprogram end or Macro end

G-codes for Turning

The following table is a fairly comprehensive reference listing of the standard and the most
common G-codes (preparatory commands) used for CNC turning (CNC lathes). All dependent
G-codes belong to the same group number and are modal, unless the Group is 00, which identifies
all non-modal commands.

NOTE: Fanuc offers an option of three G-code types (called A, B and C). The most common in
North America is the A-type. Type is selected by a system parameter. Small differences between
control units should be expected - check the Fanuc reference manual for your application!

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

BASIC PROGRAM CODES 17
G-code types cannot be mixed !
G-code Type
Group Description
TypeA| TypeB | TypeC
G00 G00 G00 01 Rapid positioning mode
G01 G01 G01 01 Linear interpolation mode ¢
G02 G02 G02 01 Circular interpolation mode - clockwise direction
Go03 G02 G03 01 Circular interpolation mode - counterclockwise direction
G04 G04 G04 00 | Dwell function (programmed as a separate block)
G09 G09 G09 00
G10 G10 G10 00 Data setting mode (programmable data input)
G11 G11 G11 00 Data setting mode cancel
G18 G18 G18 16 | ZX plane designation ¢
G20 G20 G70 06 | English units of input
G21 G21 G71 06 | Metric units of input
G22 G22 G22 09 | Stored stroke check ON ¢
G23 G23 G23 09 | Stored stroke check OFF
G25 G25 G25 08 Spindle speed fluctuation detection ON
G26 G26 G26 08 Spindle speed fluctuation detection OFF ¢
G27 G27 G27 00 | Machine zero return position check
G28 G28 G28 00 | Machine zero return - primary reference point
G29 G29 G29 00 Return from machine zero
G30 G30 G30 00 | Machine zero return - secondary reference point
G G31 G31 00 | Skip function
G32 G33 G33 01 Threading function - constant lead thread
G34 G34 G34 01 Threading function - variable lead thread
G35 G35 G35 01 Circular threading CW
G36 G36 G36 01 Circular threading CCW or:
G36 G36 G36 00 | Automatic tool compensation for the X-axis
G37 G37 G37 00 | Automatic tool compensation for the Z-axis
G40 G40 G40 07 | Tool nose radius compensation mode cancel ¢
G41 G41 G41 07 | Tool nose radius compensation mode to the left
G42 G42 G42 07 | Tool nose radius compensation mode to the right
G50 G92 G92 00 Coordinate system setting (tool position register) and / or:

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

18 Chapter 2
G-code Type
Group Description
TypeA| TypeB | TypeC
G50 G92 G92 00 | Maximum spindle rpm setting for the G96 mode
G52 G52 G52 00 | Local coordinate system setting
G53 G53 G53 00 | Machine coordinate system setting
G54 G54 G54 14 | Work coordinate offset /
G55 G55 G55 14 | Work coordinate offset 2
G56 G56 G56 14 | Work coordinate offset 3
G57 G57 G57 14 | Work coordinate offset 4
G58 G58 G58 14 | Work coordinate offset 5
G59 G59 G59 14 | Work coordinate offset 6
G61 G61 G61 15 | Exact stop mode
G62 G62 G62 15 | Automatic corner override mode
G64 G64 G64 15 | Cutting mode ¢
G65 G65 G65 00 | Custom macro call
G66 G66 G66 12 | Custom macro modal call
G67 G67 G67 12 | Custom macro modal call cancel ¢
G68 G68 G68 04 | Mirror image for double turrets ON
G69 G69 G69 04 | Mirror image for double turrets OFF L4
G70 G70 G72 00 | Profile finishing cycle
GT1 G71 G73 00 | Profile roughing cycle - turning and boring
G72 G72 G74 00 | Profile roughing cycle - facing
G73 G73 G75 00 | Pattern repeating cycle
G74 G74 G76 00 | Deep hole drilling cycle along the Z-axis
G75 G75 G77 00 Grooving / drilling cycle along the X-axis
G76 G76 G78 00 | Multiple thread cutting cycle
G380 G80 G80 10 Fixed cycle for drilling cancel ¢
G83 G83 G83 10 | Cycle for face drilling
G84 G84 G84 10 | Cycle for face tapping
G86 G386 G386 10 Cycle for face boring
G87 G87 G87 10 Cycle for side drilling
G88 G88 G88 10 | Cycle for side tapping
G89 G89 G89 10 | Cycle for side boring
G90 G77 G20 01 Simple diameter cutting cycle
G92 G78 G21 01 Simple thread cutting cycle

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

BASIC PROGRAM CODES 19
G-code Type
Group Description
TypeA| TypeB | TypeC
G9%4 G79 G24 01 Simple face cutting cycle
G96 G96 G96 02 Constant surface speed control - (CSS mode)
G97 G97 G97 02 | Constant surface speed control cancel - (rpm mode) ¢
G98 G94 G94 05 | Feedrate per minute - I/PM or mm/min
G99 G95 G95 05 | Feedrate per revolution - ipr or mm/rev ¢
- G90 G90 03 | Absolute input of motion values
- G91 G91 03 | Incremental input of motion values ¢

Note that some G-codes, for example G36 or G50 may have different meaning. Check your
machine tool manual for any discrepancies in this reference list.

M-codes for Turning

The following table is a fairly comprehensive reference listing of the most typical and common
M-codes (miscellaneous functions) used for CNC turning (CNC lathes). Only a very few M-codes
are industry standard and common to all controls:

M-code Description
Moo Mandatory program stop
Mo1 Optional program stop
Mo02 End of program (usually no reset and rewind)
Mo3 Spindle rotation normal - clockwise
Mo4 Spindle rotation reverse - counterclockwise
M05 Spindle rotation stop
Mo7 Coolant mist ON (machine option)
M08 Coolant pump motor ON
M09 Coolant pump motor ON
M10 Chuck or collet open
M11 Chuck or collet close
M12 Tailstock quill IN (non-standard)
M13 Tailstock quill OUT (non-standard)
M17 Turret indexing forward (non-standard)
M18 Turret indexing reverse (non-standard)
M19 Programmable spindle orientation (machine option)

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

20 Chapter 2
M-code Description

M21 Tailstock body forward (non-standard)
M22 Tailstock body reverse (non-standard)
M23 Gradual pull-off from thread ON
M24 Gradual pull-off from thread OFF
M30 End of program with reset and rewind
M41 Gear range selection - low gear (if available)
M42 Gear range selection - medium gear 1 (if available)
M43 Gear range selection - medium gear 2 (if available)
M44 Gear range selection - high gear (if available)
M48 Feedrate override cancel OFF - feedrate override switch effective
M49 Feedrate override cancel ON - feedrate override switch ineffective
M98 Subprogram call
M99 Subprogram end or Macro end

Standard Program Codes

Most G-codes and M-codes used in macros are standard codes. These are available to every
user and when used in macros, are usually quite portable from one control to another. Unfortu-
nately, there is no established convention as to what codes are standard, and some may vary for
the same control used with different machines. Caution is advised here:

Always check each control/machine combination for G-codes and M-codes

Optional Program Codes

The main reason for including several non-standard M-codes in the tables is that they should
serve as an example of available M-codes. Hopefully, they will help you to find the actual func-
tion code for the same activity, done on your CNC machine. The standard program codes are
fairly common across different Fanuc models, but there are well known differences between older
and newer control versions.

The focus of this handbook is mainly on the higher level of Fanuc controls, which are more
likely to be used with the custom macro feature. Lower level controls (such as Fanuc 0), with a
macro feature, will have limited features, including G-codes and M-codes.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

3 REVIEW OF SUBPROGRAMS

To review the subject of subprograms, you have to understand first what a subprogram is, what
it can be used for and what are its benefits. Comprehensive knowledge of subprograms is essential
for macro program development.

In CNC programming, a subprogram is very similar in structure to a conventional program.
What makes it different is its content. Typically, a subprogram is a separate program containing
only unique repetitive tasks, such as a common contouring toolpath, a hole pattern or similar ma-
chining operations. For example, the task is to program a certain pattern of holes, in which the
holes have to be spot-drilled, drilled and tapped. In standard part programming, the XY point co-
ordinates for each hole will have to be calculated and repeated for each tool, using the appropriate
fixed cycle. In a subprogram, the hole locations can be calculated only once, then stored in a sepa-
rate program (subprogram) and retrieved many times, as needed, for different operations using
different fixed cycles.

A subprogram is always called by another program (main program or another subprogram).

Subprogram must only contain data common to all parts or operations

Subprogram Example - Mill

To illustrate the concept of subprograms with a practical example, a very simple pattern of five
holes is shown in the following illustration - Figure 2:

i = n i
M6 TAP] .8 Figure 2
| ‘ ﬁ Sample drawing for subprogram
\ ‘ example - mill application
7 N\ | /\\
©) ©
~ Ha “H3
(o))
| = /
1) @)] 7*777*
H5
‘ o
© =
N
©) ©
~Hi | “h2
-

21

A ETGieer NOBob ks Pefie

22

FANUC CNC Custom Macros

Chapter 3

Five holes have to be machined with three tools. Without a subprogram, the program is fairly
long, and all hole locations will be repeated for each tool. All three examples will follow the holes
in the same order, and the first tool is assumed to be in the spindle. Program Example I shows the

program without a subprogram - this is the longest version:

000

(EXAMPLE 1 OF 3 - MAIN PROGRAM ONLY - PETER SMID)

01

(PROGRAM ZERO IS AT LOWER LEFT CORNER AND TOP OF PART)

(TO
N1
N2
N3
N4
N5
N6
N7
N8
N9
N10
N11
N12

(TO
N13
N14
N15
N16
N17
N18
N19
N20
N21
N22
N23
N24

(TO
N25
N26
N27
N28
N29
N30
N31
N32
N33
N34
N35
N36
N37
%

1 - 90-DEG SPOT DRILL)

G21

G1l7 G40 G80

G90 G54 GO0 X7.0 Y7.0 s1200 MO3 TO2

G43 225.0 HO1 MO8
G99 G82 R2.5 Z-3.4 P200 F200.0
X39.0

Y45.0
X7.0
X23.0 Y¥26.0

G80 GO0 Z225.0 M09

G28 Z225.0 MO5

MO1

2 - 5 MM TAP DRILL)

TO2

MO6

G90 G54 GO0 X7.0 Y7.0 sS950 MO3 TO3

G43 z225.0 HO2 MO8

G99 G81 R2.5 Z-10.5 F300.0
X39.0

Y45.0

X7.0

X23.0 Y26.0

G80 GO0 Z225.0 MO9

G28 z25.0 MO5

MO1

3 - Mé6X1 TAP)

TO3

MO6

G90 G54 GO0 X7.0 Y7.0 sS600 MO3 TO1
G43 z225.0 HO3 MO8

G99 G84 R5.0 Z-11.0 F600.0
X39.0

Y45.0

X7.0

X23.0 Y26.0

G80 GO0 Z225.0 M09

G28 z25.0 MO5

G28 X23.0 Y26.0

M30

A ETGieer NOBob ks Pefie

(H1)

(H2)
(H3)
(H4)
(H5)

(H1)

(H2)
(H3)
(H4)
(H5)

(H1)

(H2)
(H3)
(H4)
(H5)

FANUC CNC Custom Macros

REVIEW OF SUBPROGRAMS 23

Even if the program length does not matter, it is a bad programming practice to repeat common
data. The main reason is a possible drawing change. For example, if only one hole location is re-
vised on the drawing, at least three changes will have to be done in the part program. Using a
subprogram will not only shorten the program length, but also enables much more efficient edit-
ing. Program Example 2 shows the same machining process using a subprogram call:

00002

(EXAMPLE 2 OF 3 - MAIN PROGRAM WITH A SUBPROGRAM - PETER SMID)
(PROGRAM ZERO IS AT LOWER LEFT CORNER AND TOP OF PART)

(TO1 - 90-DEG SPOT DRILL)

N1 G21

N2 G17 G40 G80

N3 G90 G54 GOO X7.0 Y7.0 S1200 M03 TO2

N4 G43 Zz25.0 HO1l MO8

N5 G99 G82 R2.5 Z-3.4 P200 F200.0 LO (OR KO ON SOME CONTROLS)
N6 M98 P1001

N7 G80 GOO z25.0 MO9S

N8 G28 Z25.0 MO5

N9 MO1

(T02 - 5 MM TAP DRILL)

N10 TO2

N1l MO6

N12 G90 G54 GOO X7.0 ¥7.0 S950 M0O3 TO3

N13 G43 z25.0 HO2 MO8

N14 G99 G81 R2.5 Z-10.5 F300.0 LO (OR KO ON SOME CONTROLS)
N15 M98 P1001

N16 G80 GO0 Zz25.0 MO9

N17 G28 z25.0 MO5

N18 MOl

(TO3 - M6X1 TAP)

N19 TO3

N20 MO6

N21 G90 G54 GOO X7.0 Y7.0 sS600 M03 TO1
N22 G43 z25.0 HO3 M08

N23 G99 G84 R5.0 Z-11.0 F600.0 LO (OR KO ON SOME CONTROLS)
N24 M98 P1001

N25 G80 GO0 z25.0 M09

N26 G28 z25.0 MO05

N27 G28 X23.0 Y26.0

N28 M30

g

01001 (5 HOLE LOCATIONS SUBPROGRAM - VERSION 1)

N101 X7.0 Y7.0 (H1)

N102 X39.0 (H2)

N103 Y45.0 (H3)

N104 X7.0 (H4)

N105 X23.0 Y26.0 (H5)

N106 M99 (SUBPROGRAM END)
%

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

Chapter 3

Note that the subprogram contains the hole locations only (XY coordinates), and nothing else.
Also note the LO or KO added to the fixed cycle block for all tools. LO or KO is a fixed cycle pa-
rameter, meaning that the cycle is not executed in the current block. The data programmed in the
current block are stored in memory and will be used when the subprogram is processed. The hole
locations in the subprogram will use any fixed cycle data that are active (passed from the main
program, including the parameters). The cycle repetition address L is used on Fanuc models
10/11/12/15 and the address K is used on Fanuc models 0/16/18/21.

There might be other ways to structure the main program and the subprogram. The clue may of-
ten be found in the main program. Anytime you see several consecutive blocks that are identical
either before or after the subprogram call, you may consider their inclusion in the subprogram. In
the shown Example 2, each time the M98 P1001 is programmed (for the three tools), it is always
followed by two identical blocks:

G80 GO0 Zz25.0 MO9
G28 z25.0 MO5

Could these blocks be added to the subprogram? Yes. The program Example 3 of the complete
program will be a bit shorter than the previous version (see reservations following the program):

00003

(EXAMPLE 3 OF 3 - MAIN PROGRAM WITH A SUBPROGRAM - PETER SMID)
(PROGRAM ZERO IS AT LOWER LEFT CORNER AND TOP OF PART)

(TO1 - 90-DEG SPOT DRILL)

N1 G21

N2 G17 G40 G80

N3 G90 G54 GO0 X7.0 Y7.0 S1200 MO3 T02 (H1)

N4 G43 Z25.0 HO1 MOS8

N5 G99 G82 R2.5 Z-3.4 P200 F200.0 LO (OR KO ON SOME CONTROLS)
N6 M98 P1002

N7 MO1

(TO2 - 5 MM TAP DRILL)

N8 T02

N9 MO6

N10 G90 G54 GOO X7.0 Y7.0 S950 M03 TO03 (H1)

N1l G43 z25.0 HO2 MO8

N12 G99 G81 R2.5 Z-10.5 F300.0 LO (OR KO ON SOME CONTROLS)
N13 M98 P1002

N14 MO1

(TO3 - M6X1 TAP)

N15 TO3

N16 MO6

N17 G90 G54 GOO X7.0 ¥Y7.0 sS600 MO3 TO1 (H1)

N18 G43 Z25.0 HO3 MO8

N19 G99 G84 R5.0 Z-11.0 F600.0 LO (OR KO ON SOME CONTROLS)

N20 M98 P1002

N21 G28 X23.0 Y26.0
N22 M30

%

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

REVIEW OF SUBPROGRAMS 25

01002 (5 HOLE LOCATIONS SUBPROGRAM - VERSION 2)

N101 X7.0 ¥7.0 (H1)

N102 X39.0 (H2)

N103 Y45.0 (H3)

N104 X7.0 (H4)

N105 X23.0 ¥26.0 (H5)

N106 G80 GOO Z25.0 M09 (CANCEL CYCLE AND CLEAR)
N107 G28 Z25.0 MO5 (Z-AXIS HOME RETURN)
N108 M99 (SUBPROGRAM END)

%

Do you like the program better than the previous version? In a strict technical definition, there
is nothing wrong with the program - it will work well as is. Yet, there is a problem of different
kind - the program uses a structure that many experienced programmers should and will avoid.
Although the program itself is somewhat shorter, it is also much harder to interpret. Look at the
reasons. When the subprogram is completed, the processing returns to the main program. Study
the main program and you will see that it is impossible to tell whether the fixed cycle had been
canceled or not. Also difficult is to see what other data may have been passed to the main program
from the subprogram. You have look deep into the subprogram to find out these important details,
which may be many printed pages away from the main program. In conclusion, while the shown
Example 3 is correct, it is definitely not recommended to be used, because of its poor structure.

Rules of Subprograms

From the last two examples for the five holes, you can see how a subprogram is defined, how it
is ended and how it is called from another program. In a summary, there are two miscellaneous
functions associated with subprograms:

M98 Subprogram call (followed by the subprogram number)

M99 Subprogram end

The M98 function must always be followed by the subprogram number, for example,
M98 P1001

The subprogram must be stored in the control system under the assigned number, for example,
as 01001. The miscellaneous function M99 is usually programmed as a separate block - and also
as the last block in the subprogram. This function will cause the transfer of the processing from
the subprogram back to the program it originated from. That may be the main program or another
subprogram.

The end of record symbol (the % sign) follows the M99 function, the same way it follows the
M30 function in the main program. The % symbol represents a flag to stop transmission of the pro-
gram, typically in DNC mode. When the processing returns to the program of origin, it will al-
ways be to the block immediately following the program call. For instance, look at the earlier
Example 2:

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

26 Chapter 3

N6 M98 P1001
N7 G80 GO0 Z25.0 MO9S

When the subprogram 01001 is completed, the program processing returns to the block N7 of
the main program (which is the program of origin in the example).

There are times when the program processing has to return to a block other than the one imme-
diately following the subprogram call. This is not a common occurrence and is used for special
purposes only. In such a case, the M99 will have a P-address, indicating which block number to
return to in the program of origin. Note that the P-address in this case has a totally different mean-
ing than the P-address in the M98 function. For example, a subprogram O1003 has the following
end block:

N108 ..
N109 M99 P47
%

In the main program, the subprogram call may look something like this:

N43 .

N44 M98 P1003

N45 .

N46 ..

N47 .. (THE BLOCK TO RETURN TO FROM THE SUBPROGRAM)

The normal block to return to would be N45. However, because of the P-address included with
the M99 function, the processing will return to the block N47, skipping two blocks. One area of
programming where this technique has a good application is bar feeding on a CNC lathe.

Figure 3 below, shows a typical subprogram application (in a structured form), with processing
returning to the next block of the calling program:

Figure 3
9 O-— O
(MAIN PROGRAM) (SUBPROGRAM) Typical program flow - a subprogram
called by the main program - this is
the most common application of
subprograms in CNC programming
Y5 MO8 P
— ... 4—————\\\\¥_______ ..
. Y M99
%
Y M30
%

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

REVIEW OF SUBPROGRAMS 27

Subprogram Repetition

It is not unusual - in fact, it is quite common - to call a particular subprogram more than once
from the same program of origin. Normally, when a subprogram is called, it is automatically pro-
cessed (executed) only once. That is the most common default condition, when no other instruc-
tion has been issued. If the subprogram has to be repeated more than once, either a special address
L or K has to be added or the number of repetitions has to be included in the subprogram call. The
choice depends on the control system. Look at this example, where a subprogram stored as 04321
has to be repeated three times:

Method 1 M98 P4321 L3 ... uses the address L - common to 6/10/11/12/15 controls
Method 2 M98 P4321 K3 ... uses the address K - common to 0/16/18/21 controls
Method 3 M98 P0034321 ... uses the combined structure in the same block

These three methods have the same result - the subprogram 04321 will be repeated three times.
What are the differences? There is a simple answer - the control systems used. The address L or K
specify the number of repetitions directly and separately from the subprogram number call - those
are the first two examples. The third example uses a combined structure - the first three digits
identify the number of subprogram repetitions (003), and the last four digits identify the
subprogram number being called (4321). Check the control system user manual to find which
method is supported for your control unit. If the number of repetitions is not specified, the system
will process the called subprogram only once.

Subprogram Nesting

The most common application of a subprogram is to call it only once and process it only once.
After that, the program of origin (usually the main program) continues normally. Although sev-
eral subprogram calls can be made from the main program, once the subprogram is completed,
the processing continues in the main program. This is called a single level nesting, and is also the
most common application of subprograms.

Fanuc controls allow for up to four levels of subprogram nesting (also called four levels fold).
Nesting means that one subprogram may call another subprogram, which may call still another
subprogram, up to four levels deep. As the number of calling levels increase, the programming
becomes increasingly more complex as well and can be quite difficult to develop. It is very un-
usual to program more than two levels deep nesting. In all cases, there is one important rule in
programming to observe:

In a nested program environment, a subprogram
will always return to the program it originated from

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

Chapter 3

The program of origin may be the main program or another subprogram. All four illustrations
that follow show a graphical program flow for the four levels of subprogram nesting:

START Figure 4

' l Single level of a sub
00001 01001 |ng.e evel ol a subprogram
(MAIN) (SUB) nesting

==

M30 v

% M99
%

END

The illustration in Figure 4 shows a general schematic representation of the previous example -
a single level of a subprogram nesting. This is the most common application of subprograms.

More complex (multi-level) subprogram nesting brings an extra power to the CNC program-
ming process, but at the price of more time required for development, as well as some clarity and
convenience built into the program. That is not to say the multi-level subprogram nesting should
be discouraged or even avoided altogether. It simply means that although you may develop a very
sophisticated program flow, but you may also be the only one who understands it.

Subprograms that use the three or four-level nesting are very rare in practice. By careful plan-
ning, the design of a control system must always be a step ahead of the design of machine tools.
For example, a 250 000 rev/min spindle speed may not be available on machine tools at this time,
but the control system can still support it, in case a particular manufacturer comes forward with
exactly that kind of a spindle. Four-level nesting has been designed for the same reason. The three
levels of subprogram nesting are illustrated as schematic graphics (Figures 5 to 7):

START _ ‘ Figure 5

¢ level sub
00001 01001 01002 Two.- evel subprogram
(MAIN) (SuB) (SUB) nesting

M30 v
% —— M99 M99
% %

END

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

REVIEW OF SUBPROGRAMS 29
START Figure 6
¢ v v Three-level subprogram
00001 01001 01002 01003 nestin
(MAIN) (SUB) (SUB) (SUB) g
M98P1001
M98P1003
M98P1002 l_
D//Iso l—l— M99 v
o ——— M99 % L——— M99
¢ % %
END
START Figure 7
¢ v v Four-level subprogram
00001 01001 01002 01003 01004 nesin
(MAIN) (SUB) (SUB) (SuUB) (SuB) g
M98P1003
M98P1001
M98P1004
M98P1002 17
D//ISO I —— M99 v
o — M99 L g9 % L— M99
N % % %
END

Subprogram Documentation

Any complex part program (subprograms and macros included) should always be well docu-
mented. Documenting CNC programs has been largely ignored by many users, often because of
the perceived need to do a job fast. Although somewhat forgivable for simple and easy programs,
the practice of not documenting programs is definitely not acceptable for subprograms and is also
not acceptable for macros. Good program documentation is the key part of any CNC program de-
velopment. Look at the schematic drawings of the four levels of subprogram nesting and you will
see how complex the program can become with each increasing level of nesting. A good docu-
mentation will help the user in orientation and program 'decoding’', therefore becomes a manda-
tory part of the programming process.

For both, the subprograms and macros, the program documentation should be internal as much
as possible. This can be achieved by including important comments in the program body (main
program, subprogram, or a macro). Program comments are typically enclosed in parentheses, for
example, as (DRILLING HOLE NUMBER 5). Provide only those comments that are relevant.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

30 Chapter 3

Subprograms vs. Macros

One main purpose of this handbook is to emphasize the custom macro option of Fanuc controls.
Since the program development of subprograms is critical as the basic knowledge for macro de-
velopment, this chapter has so far reviewed the basic concepts of subprograms, their structure and
their applications in a typical CNC program.

In the terms of purpose, custom macros are direct extensions of subprograms or similar subrou-
tines. They are treated virtually the same way as subprograms - they are normally stored under a
separate program number (O---- or O-----), and they always end the same way, using the
M99 function. Macros are called in a similar way, using the G65 preparatory command, along
with the specified parameters.

A typical CNC program can mix both, the conventional method of programming (with or with-
out subprograms) and macros - or use at least some macro features. Of course, the control system
must support the macro option.

The major difference between the two unique programming methods is the flexibility macros
offer. Unlike subprograms, macros can be used with variable data (using the so called variables),
they can perform many mathematical operations and they can store current values of various ma-
chine settings (current machine status). A very important part of macros is their ability to use con-
ditional testing, branching and looping for a very flexible program flow. The use of looping
features alone, so called iteration, adds much desired extra programming power. Overall, these
are the three items that are the most significant in programming macros:

(4 Variable data input
(1 Mathematical functions and calculations
(1 Storage and retrieval of current machine values

Unique Features

Macros have their own unique features, not found in normal subprograms or, for that matter, in
any other conventional method of part programming.

Typical features that are classified as unique to macros are mostly related to flexibility:

Program data can be changed

Program flow can be altered

Data can be passed from one program to another
Repetitions can be looped

Measurement (probing) can be incorporated
Special equipment can be fully controlled

I W Wy Iy Iy

These are only some items that distinguish the major differences between subprograms and cus-
tom macros. Do not think of macros just as a better replacement for subprograms. There are many
uses of macros that cannot be compared with anything similar to subprograms. The main - and
most unique - features of typical macros are their flexibility and ease of use, once you master the
basic issues associated with macro development.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

REVIEW OF SUBPROGRAMS 31

Unlike subprograms, macros include many special functions that can be found on a typical sci-
entific calculator (TAN, COS, SIN, SQRT, etc.). Not only simple or more complex algebraic
functions can be used, macros can also be applied for trigonometric calculations, square roots,
powers of a number x2 or x3, inverse functions, nested parentheses, rounding values, using many
other features (just like the calculator functions). Specific constants, such as the pi function (7T =
3.141592654...), are not available, but can be defined. Calculated values can be stored into a
memory register and used in the current program, or any other program.

There is no doubt that macros can elevate CNC programming to the levels never before possible
with only main programs or subprograms alone. Knowledge of subprograms, how they work,
how they are structured and how they interact with main program, is the key knowledge required
for any programmer trying to unravel the mystery of custom macros.

CNC Lathe Applications

Macros are useful for any type of a machine tool. Although machining centers (used so far as il-
lustrative examples) have become the most likely sources of macro programs, that does not mean
other machine tools are excluded. The one machine tool that is widely used in everyday produc-
tion, the one machine tool that will benefit from custom macros is - the CNC lathe.

In Figure 8 shows a drawing of a lathe part with three identical grooves.

29
21

I 13 2X 0.5x45° Sample drawing for
subprogram example

L - lathe application

Figure 8

~
FHIH
i N

GROOVE DETAIL

2105
280

Groove detail shows a 4x3x0.5 mm groove. Although all three grooves are located at the same
diameter, it is quite likely that this groove - or any standard groove - can still have the same over-
all dimensions but be placed at different diameters. Whether developing a subprogram or a macro,
this is a very important consideration. While grooves that do not change diameters can be pro-
grammed in absolute mode along the X-axis and incremental mode along the Z-axis, grooves that
will be at various diameters have to be programmed incrementally along both axes.

A ETGieer NOBob ks Pefie

32

FANUC CNC Custom Macros

Chapter 3

Subprogram Development

The basic approach for developing a macro is the same as for developing a subprogram. In this
case, a 3 mm wide grooving tool will be selected (only the grooving operations are shown), fol-

lowi

1.

5.

ng this machining procedure:

In the main program, the tool will move to the left side of the groove wall
and 0.5 mm above the part diameter (= initial position for each groove)

In the subprogram, the tool shifts 0.5 mm to the right (middle of the groove),
plunges to the depth but leaves 0.1 mm stock at the bottom

Tool retracts 0.5 mm above the part diameter, shifts to the start of the left chamfer,
cuts it, then it cuts the left groove wall - still leaving 0.1 mm stock at the bottom

Tool retracts to the start position, shifts to the start of the right chamfer, cuts it,
then it cuts the right groove wall to the full depth and sweeps the bottom towards

the left groove wall

Tool retracts above the diameter to the initial position - subprogram ends

The main program and the subprogram are listed with comments:

(MAI

N PROGRAM)

N1 G21 TO0100

N14
N15
N16
N17
N18
N19
N20
N21
%
0800
N101
N102
N103
N104
N105
N106
N107
N108
N109
N110
N11l1
N112
N113
N114
%

T0500

G96 S120 MO03

GO0 X81.0 Z-13.0 TO505 MO8
M98 P8001

GO0 z-21.0 M98 P8001

GO0 z-29.0 M98 P8001

GO0 X150.0 Zz100.0 TO500 MO9
M30

<... facing and turning ...>

Start for Groove 1 - initial position
Cut Groove 1

Start for Groove 2 + cut Groove 2
Start for Groove 3 + cut Groove 3

1 (4 X 3 X 0.5 GROOVE SUBPROGRAM - 3 MM WIDE GROOVING TOOL)

GO0 W0.5

GO0l U-6.8 F0.125

GO0 U6.8

W-1.5

GO0l U-2.0 W1.0 FO0.08
U-4.8 FO.1

U6.8 WO0.5 F0.25

GO0 W1.5

GO0l U-2.0 W-1.0 F0.08
U-5.0 FO.1

W-1.0 F0.08

U7.0 WO.5 FO0.25

GO0 W-0.5

M99

Shift to the middle of the groove

Feed-in - leave 0.1 at the bottom

Rapid out to the start position

Shift to the start of the left chamfer

Cut the left chamfer

Feed in along the left wall - leave 0.1 at the bottom
Rapid feed to the start position

Shift to the start of the right chamfer
Cut the right chamfer

Feed in along the right wall to full depth
Sweep the bottom to the left wall

Rapid feed to the start position

Shift back to the initial position

End of subprogram

The included comments should be sufficient to understand the subprogram design.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

4 SYSTEM PARAMETERS

The machine related information that establishes the connection between the CNC system and
the machine tool, is stored as special data in internal control system registers, called the system
parameters, or control parameters, or just CNC parameters. As an English word, its meaning is
oriented towards mathematics, and is defined in a rather fancy sentence - ‘A parameter is a quan-
tity which may have various values, each fixed within the limits of a stated case’. The sentence
shows that the dictionary definition is right on for the purpose of defining parameters for a CNC
system. Do not confuse parameters of the control system with the method of programming called
parametric programming - except linguistically, they are not related. If you are a part program-
mer with limited experience, you should not be concerned about system parameters too much.
Their original factory settings are generally quite sufficient for most work.

For specialized work like macro development, with all its related activities, such as probing and
gauging, automatic offset changes, special methods of input and output, etc., a good in-depth
knowledge of the system parameters is extremely important. There are hundreds of parameters
available for any control system, and the majority of them you will never use.

Parameters are critical to the CNC machine operation - be careful when working with them !

What are Parameters ?

When the machine tool manufacturers design a CNC machine, they have to connect it with the
CNC system, mostly designed by a different manufacturer. For example, a Makino™ CNC ma-
chining center should be connected with a Fanuc CNC system - two independent manufacturers of
two different products are involved in the process. The process of connection and configuration is
often known as interfacing. The control system of Fanuc units has been designed with great inter-
nal flexibility and many parameters have to be set before the CNC machine tool is operational.
Normally, it is the machine tool manufacturer (often called the vendor) who supplies the end user
with all settings - the interfacing - a typical user seldom makes any changes. Even when a system
parameter is changed by the program (standard or macro), the change is often only a temporary
one, designed for a particular purpose. When the purpose is achieved, the program (or macro)
normally resets the parameter to its original contents. Parameters are often changed intentionally,
in order to optimize the performance of the machine tool.

The majority of control parameters relate to the specifics of a particular CNC machine tool,
known to the machine tool manufacturer or vendor as various defaults. They include such items as
all machine tool specifications, functions and characteristics that are in the exclusive domain of
the manufacturer. Typical examples include rapid traverse rate, spindle speed ranges, length of
axis motions, rapid or cutting feedrate ranges, clearances, various timers, data transfer baud
rates, and many others. These parameters do not change and any attempt to make any changes
severally endangers smooth machine operation.

33

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

34 Chapter 4

The settings, collectively known as parameters, are means of matching the control system with
the unique features of the particular CNC machine tool. That way, a single control system may be
used with many CNC machine tools, from different machine tool manufacturers, in many shops,
and each with a setting unique to the particular machine.

Many CNC users are not familiar with the function of parameters at all and only a handful know
how the parameters can be used to an optimum performance of a CNC machine. The reason is that
when a company purchases a CNC machine, everything is set to work properly and without addi-
tional settings or changes. These factory settings work well for the majority of users and there is a
little need to make any changes.

For macros - or for any serious CNC work - the programmer should be thoroughly familiar
with the way system parameters work. Even if major changes to the default settings are planned,
the knowledge of ‘how-to-do-it” can be very useful.

Saving Parameters

There is a simple rule that should be followed by any CNC programmer and operator. The rule
is so simple and so much a common sense, that it is surprising how often it is not followed. This
rule recommends that all system parameters should be backed up. The same rule that applies to
any computer data and is fairly well followed in an office environment, is mostly ignored in ma-
chine shops. There are several reasons for the backup, but two of them are the most important.

The first reason is that all current settings of the parameters need power (energy) to be retained
in the memory of the CNC system. The energy is supplied through the main power, whenever the
machine tool is operational. When the main power is turned off, a built-in battery power takes
over. Each control has a battery backup that provides power to the important settings, even when
the main power is not supplied. However, battery power is not permanent - batteries do lose
power and with loss of power, data is lost as well.

Number two reason is customized settings. It may be fairly easy to replace lost parameters that
had been supplied by the machine tool manufacturer. Either the manufacturer had provided the
customer a copy or keeps a copy on file. It could also be the machine tool dealer that keeps a
backup (no guarantees, of course). These backups may help to restore standard parameters. What
about the parameters that have been modified by the user, or during a service, or even through
some customized program? These parameters are strictly in the domain of the user and without a
backup strategy, they are irreplaceable.

Backing Up Parameters

Control system parameters can be backed-up (saved externally) by several means. The most
popular is to save the parameters as a disk file, using the DNC features of the control system. This
operation requires a computer (laptop is ideal)), with the proper communication software installed
and configured. Saved parameters should also be printed as a hard copy, in case something hap-
pens to the disk itself. If you cannot save parameters in an efficient way, like the DNC method,
use the old-fashioned pencil and paper and write them down. There may be quite a few of them, it
may take time, but the effort may be well worth it in case of emergency.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

SYSTEM PARAMETERS 35

Parameter Identification

Default parameters are supplied by the machine tool manufacturer or vendor and they are stored
in the control system in a very orderly way - they are numbered and separated into special groups.

Numbering of Parameters

Parameters are typically numbered as four-digit integers within the 0000 to 9999 range. Since
there are several models of Fanuc controls available, you should be aware that different control
models often use different parameter numbers, even for the same type of setting. In addition, there
are parameters having one meaning for a milling system and a different meaning for a turning sys-
tem. Compound these differences with a number of different options available on each control,
and you have a vast maze to explore. This can be confusing to anybody, including experienced
service technicians.

Every CNC machine has literally several hundreds specifications that have to be set by the sys-
tem parameters. However, for the purposes of the end user (the actual user of the CNC machine
tool), the parameters belong to only two general groups:

& Parameters that cannot be changed by the end user (machine oriented)

¢ Parameters that can be changed by the end user (program oriented)

As a rule, any system parameter that is machine specific, should never be changed by the end
user. On the other hand, many parameters relating to the CNC program (or some operational
functions) may be changed by the end user, usually for the purpose of compatibility with other
machine tools in the manufacturing environment or to maintain a consistent programming struc-
ture. Typical settings may include configurations of various machining cycles, input and output
settings (I/0), various offsets and compensations, tooling data, cutting data, and many others.

Parameter Classification

Numbering the system parameters makes sense for the programming purposes, but the sheer
number of parameters available to the user (CNC programmers are included here) makes it diffi-
cult to find a particular parameter quickly and efficiently. Just try to memorize a few dozen of par-
ticular four digit numbers.

Fanuc has been well aware of the potential problem and organized the parameters into about
two and half dozen logical groups, based on the general purpose of the parameters. To illustrate
what areas of the machine tool operation the CNC system parameters cover, the list on the next
page is an itemized collection of parameter classification, by the groups, for a typical Fanuc con-
trol system. As a CNC programmer, you should be familiar with all of them, although most of
them will be meaningful only to the service technicians.

In the Fanuc reference manual (typically called the Parameter Manual), each group has an as-
signed range of parameter numbers with detailed descriptions.

A ETGieer NOBob ks Pefie

36

FANUC CNC Custom Macros

Chapter 4

Parameters Grouping

The following groups are controlled by Fanuc. Do not expect all of them on all controls and do

Parameter Relation Group

Parameters for Setting

Parameters for Axis Control Data
Parameters for Chopping
Parameters for Coordinate System
Parameters for Feedrate
Parameters for Accel./Decel. Control
Parameters for Servo

Parameters for DI/DO

Parameters for MDI, EDIT, and CRT
Parameters for Programs
Parameters for Serial Spindle Output
Parameters for Graphic Display
Parameters for I/0 interface
Parameters for Stroke Limit
Parameters for Pitch Error Comp.
Parameters for Inclination Comp.
Parameters for Straightness Comp.
Parameters for Spindle Control
Parameters for Tool Offset
Parameters for Canned Cycle
Parameters for Rigid Tapping

Parameters for Scaling & Coord. Rotation
Parameters for Automatic Corner Override

Parameters for Involute Interpolation

Parameters for Uni-directional Positioning
Parameters for Polar Coord. Interpolation

Parameters for Indexing Index Table
Parameters for Custom (User) Macro
Parameters for External Data Input

Parameters for Oper. Time & Number of Parts

Parameters for Program Restart

Parameters for High-Speed Skip Signal Input

Parameters for Automatic Tool Comp.
Parameters for Tool Life Management

Parameters for Position Switch Functions

Parameters for Turret Axis Control
Parameters for High Speed Machining
Parameters for Axis Control by PMC
Parameters for Service

Other parameters

10/11/12

0000-
1000-

1220-
1400-
1600-
1800-
2000-
2200-
2400-

5001-
5200-
5420-

5600-
6000-
6200-

6400-
6820-

7000-

7200-

7300-

8000-

15

0000-0032
1000-1058
1191-1197
1200-1260
1400-1494
1600-1631
1800-1980
2000-2049
2200-2388
2400-2900
3000-3303
4821-4833
5000-5162
5200-5248
5420-5425
5461-5474
5481-5574
5600-5820
6000-6024
6200-6240

6400-6421
6610-6614
6620-6634
6820

7000-7089

7110

7200-7214
7300-7333
7400-7442

7500-7557

8000-8010

not expect them to be permanent. Control systems do develop, therefore they do change. Al-
though the list is generally accurate, always consult the manual for your machine tool and the con-
trol system to get the parameter groups for a particular machine tool (changes happen constantly).

16/18/21

0000-
1000-

1200-
1400-
1600-
1800-
3000-
3100-
3400-

6500-
0100-
1300-
3600-
8200-

3700-
5000-
5100-
5200-
5400-
5480-
5610-
5440-
5460-
5500-
6000-
6300-
6700-
7300-
6200-
6240-
6800-
6900-

7500-
8001-

7600-7794

As the list shows, many of the system parameter groups have nothing to do with CNC program-

ming directly and are listed only as a matter of interest only, or for the electrical or electronic spe-
cialists, as well as service technicians. To the CNC programmer, the list should serve as a source
of reference. Do not confuse parameter numbers with system variables!

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

SYSTEM PARAMETERS 37

Parameter Display Screen

A brief look at a typical display of parameter screen on a CNC unit (using the SYSTEM/PARAM
menus of the keyboard), many display screen pages will be available. The screen pages can be
quickly scrolled through, forward or backward. A particular parameter can be called by its num-
ber (see Parameter Manual), in order to speed up the search. The screen cursor (display indica-
tor) will be positioned at the parameter number and the parameter data will be displayed in reverse
colors (highlighted). For the purpose of this handbook, the actual procedures of the keyboarding
is not important - the control system manual describes all necessary steps.

Parameter Data Types

The classification of parameters in the brief section listed on the previous page has only shown
the description of the parameters by function. In a control system, the actual parameter values are
entered for each parameter number, as needed. Depending on the individual parameter applica-
tion, the parameters are also classified by their data type. Each data type group uses a different
range of valid parameter data entry.

On all Fanuc controls, there are four data type groups available. They are listed here with ap-
propriate data ranges for each group:

Parameter Data Type Available Data Range
Bit or Bit axis 0ori
Byte or Byte axis 0 to +127 (byte) or 0 fo 255 (byte axis)
Word or Word axis 0 fo + 32767
Two-word or Two-word axis 0 fo +99999999

Bit-Type Data Type

Bits and bytes are common computer terms and should not be confused with each other. A bit is
the smallest unit of a parameter input. Only fwo input values are allowed - the digit zero (0) and
the digit one (1). The word bit is an abbreviation, derived from the full version of the words bi-
nary digit, as in binary digit. The English word binary has its origin in the Latin word binarius,
meaning something consisting of two parts. Based on this definition, the two possible input values
0 and 1 represent a certain option, selected from no more than two conditions. Such a condition
can be either true or false. True or False conditions can also be interpreted as Yes and No, On or
Off, Done or Not Done, and so on. In the bit type entry, the selection represents one of only two
possible alternatives.

A byte (described later) is a sequence of several adjacent bits (typically eight), that represents
one alphanumerical character of data that is processed as a single unit of instruction.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

38 Chapter 4

Each bit type system parameter can be set with input values for up to eight registers (also known
as locations). Be careful and watch the bit type parameters - a single data number is assigned eight
(8) bits (i.e., an eight-bit binary parameter). Each bit has a different meaning, so exercise care
when changing only a single bit but not any other stored under the same parameter number. The
safest way is to write down the original settings, make the required change, then compare the two.

The bit parameter entry (in all computer applications) has its own standard notation, in the way
it appears on the display screen - note the numbering method for CNC units:

Parameter Number

#7 #6 #5 #4 #3 #2 # #0

There are three items of importance here - first item is the parameter number (graphically
shown at the top), on the display screen usually shown to the left of the data (on the same line of
display. depending on the control system). The second item is the numbering of the bit registers -
it starts from zero to seven, not from one to eight. This is a standard computer method - computers
start counting from 0, not from 1. The third item of importance is that the bit registers #0 to #7
are shown in reverse order, #7 being the first (left-most), and #0 being the last entry (right-most),
when read from left to right. These three items are very important in human communications. For
example, if the service technician suggests that you change the bit #2 of a particular parameter to
such and such setting, you have to know exactly which register location it is - you have to speak
the same language as the technician! This happens quite often when the conversation takes place
on the phone, via fax, e-mail, or via similar means.

For example, the parameter #0000 for Fanuc 16/18/21 control systems uses only four of the
available eight parameter registers (bits):

#0000

SEQ INI ISO TVC

0 0 0 0 1 0 1 0

If there is no heading, it means the bit is unassigned - it has no value, it does not exist. In the ex-
ample, there are also four unassigned bits. If the bit is assigned, the two-line representation on the
display screen of the control system shows abbreviated description of each relevant parameter (as
a bit name). These descriptions are often hard to decode just by reading them, but they are well
described and with good detail in the Fanuc manual that contains parameter descriptions and usage
(Parameter Manual).

In the example above (parameter #0000), the four listed bit names represent settings for four
different (and independent) bit-type parameters, related to settings:

SEQ Automatic insertion of sequence numbers
0: Not performed
1: Performed

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

SYSTEM PARAMETERS 39

INI Unit of input

0: Metric (millimeters)

1: Inches (inches)

ISO Code used for data output

0: EIA code

1: ISO code
TVC TV check

0: Not performed

1 Performed

Based on the example entries of the parameter #0000, the shown bit settings for the illustrated
control system are:

SEQ = 0 ... Automatic insertion of sequence numbers is not performed
INI = 0 ... Unit of input is metric - mm

ISO = 1 ... ISO code is used for output

TVC = 0 ... TV check is not performed

Since only four registers - out of eight possible ones - are used (in Fanuc 16/18/21 controls) for
the parameter setting of #0000, the remaining four registers are irrelevant, or to use a proper
computer description, they are unassigned.

For comparison, the Fanuc 15 control system also uses parameter #0000 for settings, but with
a totally different content (meaning of bits):

#0000

DNC EIA NCR ISP CTvV TVC

#7 #6 #5 #4 #3 #2 #1 #0

The parameter #0000 shows the contents for the Fanuc 15 control system:

DNC DNC operation with the remote buffer
0: High speed distribution (HSD) enabled, if the HSD enable conditions are satisfied
1: Not a high speed distribution but a normal distribution can be always performed

EIA Punch code is

0: ISO code

1: EIA code

NCR In ISO code, the endo of block (EOB) code is punched as
0: LF CR CR (LF = Line Feed, CR - Carriage Return)
1: LF

ISP Specifies whether the ISO code contains a parity bit

0: ISO code with a parity bit

1: ISO code without a parity bit

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

40 Chapter 4
CTV Specifies whether counting of characters for TV check is performed
during control-out
0: Check is performed
1: Check is not performed
TV Specifies whether TV check is performed
0: TV check is not performed
1: TV check is performed

These descriptions of individual bits are taken directly from the Fanuc Parameter Manual.
There is a very good chance that you may not understand some (or all) of the terms or functions in
the descriptions. That is quite normal for a typical programmer or operator - only qualified ser-
vice technicians should understand the many intricacies. It also leads to two important rules:

Always make sure you fully understand the exact meaning of each parameter

Do not change any parameter unless you know how it works

Relationship of Parameters

There are many cases when the setting of one system parameter is directly related to the setting
of another system parameter. In such cases, there are two or more adjustments to different param-
eters to be done, in order to achieve a particular result. At other times, the setting of one parame-
ter often influences meaning of another parameter. In the example shown below, such a situation
does indeed exist. Let’s explore it - it is a simple application and it is safe to try it on your own.
The example is the same as shown earlier, for parameter #0000.

#0000

SEQ INI ISO TvVC
0 0 0 0 1 0 1 0

Consider the parameter setting in the bit register #5 (SEQ), for Fanuc models 16/18/21. This
bit sets the automatic insertion of sequence numbers into a part program, when entered directly
into the control. In such a case, the part program is entered into the memory by using the key-
board of the control system (the slowest method of input, using only one finger typing, but not un-
common). This is typically useful only if you enter short CNC programs, using the control panel
hard keys. If the parameter #5 is set to / (Automatic insertion of sequence numbers is performed),
you can concentrate on the keyboarding of the program data only and forget the block numbers -
they will be inserted automatically - because that is the purpose of the bit #5.

So far so good, the automatic block numbering will save some time - but there is one more small
item to consider. What will be the actual increment of these sequence numbers? 1, 2, 5, 10?
More? Less? Is there a default? Can it be changed? For many programmers, this is important.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

SYSTEM PARAMETERS 41

Fanuc controls allow the use of any increment of the block numbers, in any order, so the possi-
bilities are quite extensive. From the point of view of the software designer, no high end software
should contain assumed (or preset) values. Such an approach would limit the user and make the
software weak as a result. Fanuc engineers respect that view and allow settings of the block num-
ber increment by individual users. In fact, it is not enough just to say ‘Set automatic insertion of
sequence numbers’ - we also have to say ‘Set automatic insertion of sequence numbers with a par-
ticular increment’.

Parameter #0000 and bit #5, do not allow this setting at all. A related parameter, a parameter
that is related to the #0000 and its bit #5 has to be used - and this parameter must contain the
block increment amount. In the case of Fanuc 16/18/21 controls, the parameter is #3216, and is
described in the Fanuc Parameter Manual as:

#3216

Increment in sequence numbers inserted automatically

In the above example, the block number increment can be set within the following limitations:

Data Type: Word
Valid Data Range: 0 to 9999

The value of this parameter is the actual increment for the automatic block sequencing, within
the range of 0 to 9999, defined as a word type entry. The word type entry will be discussed
shortly. The selected amount will only be applied, if the bit #5 of parameter #0000 is set to 1,
otherwise it will be ignored. This is a typical example of one parameter setting that is related to the
setting of another system parameter. For different control systems (controls that claim Fanuc
compatibility), the principle of setting will be the same, but the parameter numbers and the bit
register numbers may be different. Always check the instructions for your control system.

Byte Data Type

The computer terms 'bit" and 'byte’ have been already described somewhat briefly. These two
words used in computing can be easily confused because the look similar. True, these words are
similar, but they are not the same - they are unique words defined as bit and byte. Relating to the
system parameters, the bit type parameter has already been described. The other type, the byte
type system parameter accepts a range of values - from -127 to +127 for entries that require a
signed value (plus and minus values), and the integer range from 0 to 255 for entries that do not
require signed numbers. These ranges cover all eight bit entries, where each byfe digit is the bit.

For example, many modern CNC machining centers are capable of the so called rigid tapping,
rather than tapping using the floating tap tool holder. Most control systems will require a specific
M-code for this function. This specific rigid tapping M-code is normally provided by the machine
tool builder and must be interfaced to the control system - yes, you guessed it - via a parameter
setting. The machine tool builder does all that. On Fanuc 16/18/21 controls for milling, the
M-code for rigid tapping is specified by the parameter #5210:

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

42 Chapter 4

#5210

Rigid tapping mode specification M code

Data Type: Byte
Valid Data Range: 0 to 255

This parameter sets the M-code that specifies the rigid tapping mode. If the parameter #5210 is
set, for example, to 75, the rigid tapping mode in the CNC program will be activated by the mis-
cellaneous function M75.

Only unassigned M-codes can be used and the machine tool design must be able to accept the
rigid tapping mode (check the machine tool specifications). If the parameter #5210 is set to the
zero value (0), Fanuc 16/18/21 milling systems will assume that the entry is an arbitrary 29, pro-
grammed as M29 - the default value.

Word Data Type

Another data type that applies to system parameters is the word type. The Word Type listing of a
control system parameter covers the range from -32767 to +32767. This long integer range rep-
resents the sixteen bit data area of the parameter registry. The manufacturer’s setting of parameter
#3772 (assigned the Maximum Spindle Speed function), illustrates the word type parameter:

#3772
8000
Data Type: Word
Unit Of Data: RPM

Valid Data Range: 0 to 32767

In the above example, the maximum spindle speed for a particular CNC machine tool has been
set to 8000 rev/min. The maximum rev/min value is a typical setting that relates to the machine
tool itself and represents a certain fixed machine tool specification. It also represents a setting that
is untouchable by the user! It belongs to the machine tool only and it cannot be changed. Never at-
tempt to change the spindle speed or feedrates, for example, because the appropriate settings are
always at the discretion of the machine tool manufacturer.

2-Word Data Type

Two-word type parameter setting is similar to the word type, but accepts much larger values. In
fact, the valid input values are between -99999999 and +99999999. An example that can be used
to illustrate the 2-word system parameter type is for the setting of the maximum cutting feedrate -
parameter #1422 (Specify the maximum cutting feedrate):

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

SYSTEM PARAMETERS 43

#1422

Maximum cutting feedrate for all axes

Data Type: 2-word

System Setting: Metric or Inch

Unit of Data: 1 mm/min or 0.1 inch/min

Data Range (mm): 6 to 240000 (IS-A/IS-B) or 6 to 100000 (IS-C)
Data Range (inch): 6 to 96000 (IS-A/IS-B) or 6 to 48000 (IS-C)

For this parameter type, the control system will check the range of the input values. As the
above example clearly illustrates, the range is not identical for both units of data. This is quite a
normal occurrence, because in this type of input, the range will vary for different system parame-
ter settings, dependent on the dimensional units used.

Note - The input range varies for different increment systems (IS):

a IS-A/B Smallest input increment: 0.001 mm or 0.0001 inch
or 0.001 degree

a1 IS-A/B Maximum value: 99999.999 mm or 9999.9999 inch
or 99999.999 degree

a IS-C Smallest input increment: 0.0001 mm or 0.00001 inch
or 0.00001 degree

a IS-C Maximum value: 9999.9999 mm or 999.99999 inch
or 99999.999 degree

The A/B increment system is the most common one that is available on the majority of CNC
machine tools. Word type parameter is also called the integer type, and the two-word type parame-
ter is also called a long integer type. These alternate terms are often used in 'standard' computer
languages.

Axis Data Type

Several system parameters refer to the available machine axes. These are variations of the other
types of parameter setting, and may also be expressed as the axis data type:

(1 Bitaxis type
(1 Byte axis type
(1 Word axis type
1 2-Word axis type

As the name of the parameter type suggests, there is a similarity between the standard settings,
and the axis settings of the four types. The main difference is that the parameter related to the axis
setting can be set to control each axis independently.

A ETGieer NOBob ks Pefie

44

FANUC CNC Custom Macros

Chapter 4

Important Observations

From the previous explanations, some very useful conclusions can be drawn. Based on the sys-
tem parameter storage entry type, all parameters can be separated into three general areas:

¢ Binary codes
¢ Units input

¢ Setting values

All features are equally important. Depending on the system parameter type, all parameters fall
within a specified entry requirements, whether it is a single value or a range of values.

Each of the three parameter groups covers different input values or amounts. The binary input
can only have an input of 0 or 1 for the bif data format, and O to +127 for the byte type. This cov-
ers the bit and byte sections. Units input section has a much broader scope - the units can be in ei-
ther English or metric representations, expressed as a millimeter, inch, mm/min, inch/min,
degree, millisecond, etc., depending on the kind of data entry and the parameter selection. A sys-
tem parameter value can also be specified within a given range, for example a number within the
range of 0 to 499, or 0 to +99999, or 0 to +127, etc.

A typical example of a binary input parameter setting is a selection between two available op-
tions. For instance, a control feature called dry run can be set either as effective or ineffective for
the rapid motion command - there are two possible and available system options. To select a
particular preference, a predetermined bit number of a certain parameter would be set to 0 to
make the dry run effective, and to / to make it ineffective. Non-Fanuc controls use similar inputs.

Units Input, for example, is used to set the Increment System IS-x (IS-A, IS-B, IS-C) - the sys-
tem of dimensional units. Computers in general do not distinguish between inch and metric units,
for example - to the computer, a number is a number. This applies equally to both the CNC and
CAD/CAM software. It is up to the end user and the parameter setting, whether the control sys-
tem will recognize the input of 0.001 or 0.0001 as the smallest motion increment or not. Another
example of the units input would be a parameter setting that stores the maximum feedrate for each
axis, the maximum spindle speed of the machine, rapid traverse rate and other features.

To illustrate the setting value of a control system parameter within a specified range, take a typi-
cal example of a CNC machine tool that has an indexing table, such as a general horizontal CNC
machining center. A particular control system can be applied to a machine tool that supports
one-thousandths of a degree increment, as well as to a machine that supports one degree increment
or to a machine tool that supports five degree increments. Using the system parameter settings,
the selected parameter can be set to the smallest available angle for the table indexing. Most users
will have this parameter set to either 1 or 5 degrees as the least angle. For rotary axis (or advanced
indexing tables), this setting will have a value of 0.01 or 0.001 of a degree. A parameter value
cannot be set to a value that is lower or higher than the machine tool itself can support - these are
physical limitations that should be considered at the time of machine tool purchase. For example,
an indexing axis with the minimum increment of one degree, will not become a rotary axis with
0.001 increment, just because the system parameter is set to a lower value. This is an improper
setting and will cause serious damage to the machine, if attempted!

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

SYSTEM PARAMETERS 45

Binary Numbers

In the preceding topics, the application of O and 1 entries was explained as a very common
method of setting system parameter values. These are called the bit settings and are based on the
system of binary numbers. Although many programmers have heard this term, not all understand
its concept. In any CNC training program, binary numbers are not exactly the most appealing sub-
ject and are not generally covered. Strictly speaking, there is no need to know the binary numbers
and how they work, but the knowledge does help in several special applications. Also, the subject
of binary numbers may be interesting to those who would like to know more about it. The detailed
description of binary numbers is beyond the scope of this handbook, but there are many excellent
computer books describing the subject in detail. This section will only cover their main essence.

In everyday life, we use the decimal number system, which means we have ten digits available,
from O to 9. The base of the decimal system is 10. In the decimal system, a number can be ex-
panded, using the base of 10. For example, number 2763 can be represented as:

2x10° + 7x10* + 6x 10" + 3x10° = 2763

The base of binary system is not 10 but 2. For the purposes of a macro beginner, the binary sys-
tem uses only the digits 0 and (one choice out of two). The prefix bi- means 'of two'. Each sym-
bol is known as a bit (Binary digIT). Many CNC system parameters are of the binary type. In
computing, various components can only have two states - ON or OFF, Open or Closed, Active or
Inactive, and several others. These ON-OFF states are represented by the digits 0 and /, in the
system parameters of the bit type. In one of the earlier examples, a typical setting of such a param-
eter was shown. For example, in the following parameter, the 8-bit value is

00001010

which can be represented as:

0 0 0 0 1 0 1 0
#7 #6 #5 #4 #3 #2 #1 #0
27 26 25 24 23 22 21 20
128 64 32 16 8 4 2 1

Note how each bit in the above example is represented by its own number (#0 to #7), its own
exponential representation and its bit value. The sum of the bits is simple to calculate:

0x2" +0x2%5 +0x2°+0x2* +1x2°+0x22+1x2' +0x2° =10

In the chapter ‘Automatic Operations’, an actual application of the binary numbers is shown in
detail, relating to the subject of mirror image status check.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

46 Chapter 4

Setting and Changing Parameters

All control system parameters should be set or changed only by an authorized person, usually a
qualified electronic service technician, an electrician, or an electronics professional. In all cases,
always follow one simple rule relating to parameters:

Backup all system parameters and never modify their settings,
unless you are qualified and authorized to do so

As the general rule suggests, always keep a backup of the original system parameter settings.
The backup should be stored on a disk, tape, or another computer and placed in a safe place - just
in case. More than one copy kept at different locations enhances the quality of the safekeeping.

Protection of Parameters

Except a few system parameters related to setting, the majority of parameters cannot be ac-
cessed casually or by an accident. Parameters are automatically protected by the control system.
In order to set or change a system parameter, the user has to enable the Parameter Write setting.
This is usually done in the MDI mode, using the SETTING function on the control panel. Screen
appears with the following line (Fanuc 16/18/21):

PARAMETER WRITE = 0 (0 : DISABLE 1 : ENABLE)

If the cursor is positioned on the currently set value, it can be changed, using the ON:1 soft key
to enable parameter setting, or OFF:0 soft key to disable it. Note that while the setting is ON
(changes enabled), the control system is in an alarm condition (non-operational). This is a normal
and standard prevention from accidentally forgetting to disable the setting when finished. Some
control systems require a user password to change parameters.

Other control systems, notably Fanuc 10/11/12 as well as Fanuc 15, use a special setting in pa-
rameter #8000, bit #0 (PWE). This parameter is of the bit type and accepts O or 1 input only.
Setting the parameter to O (the normal state), will prohibit changes to the parameters, setting the
parameter to 1 will allow the parameter setting changes.

For any CNC system, and in all cases when the parameter changes are enabled, the control sys-
tem will enter into the ALARM state (error or fault condition). This is quite a normal situation - its
purpose is safety - to guarantee that the machine tool cannot be operated while the system parame-
ters can be changed.

Battery Backup

Another type of parameters protection is provided by the control manufacturer. It is called the
battery backup. The system parameters (as well as many other settings) of the control system are
maintained even when the main power to the machine tool is turned off (intentionally or by an ac-
cident), for example, during machine relocation.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

SYSTEM PARAMETERS 47

The general intent is that a battery backup starts supplying the required power the moment the
normal power to the CNC machine tool had been interrupted. Keep in mind that the power sup-
plied by a backup battery system is only temporary. You should always have a current physical
backup of all system parameters (as well as all other settings and the current part programs). The
most common backup is downloading the settings to a disk, making two or three copies of the
disk, printing out the file and storing each disk at a different location.

Changing Parameters

Many system parameters can be changed - this ability gives them the flexibility needed in a
manufacturing environment. The method of setting or changing one or more control system pa-
rameter offers several choices:

(1 Through the external device, such as a tape or a disk file
(d Through the control unit, using the MDI mode (Manual Data Input)
(1 Through the part program

The first and second methods are well described in various Fanuc manuals. The third method -
changing parameters through the part program - is described in the next chapter in detail, under
the subject heading of programmable data input.

Many control system parameters are periodically updated during program processing. The
CNC operator, or even the CNC programmer, is often not aware that this activity is going on at
all. There is no real need to monitor such activity. The safest rule to adhere to is that once the pa-
rameters have been set by a qualified CNC service technician, any temporary changes can - and
should - be done through the CNC program itself. If permanent changes are required, only a qual-
ified and authorized person should be assigned to do them - and nobody else.

System Defaults

Many control system parameter settings that are already in the control unit at the time of ma-
chine purchase have been entered by the machine tool manufacturer (or the vendor in some cases)
as the exclusive choices, the most suitable choices, or the common selections. That does not mean
these settings will become your customized settings - it only means that they were selected on the
basis of their common usage. Quite a few changeable settings are rather conservative in their val-
ues, for various safety reasons. For example, the built-in clearance for the G83 peck drilling cycle
may be 0.5 mm or 0.02 inches. On Fanuc 16/18/21 controls, the clearance value is set in the pa-
rameter #5115 - Clearance of canned cycle G83. Parameter #6211 controls the same clearance
on Fanuc 15 controls. This is a word-type parameter entry, that is usually set to 0.5 mm or 0.02
inches. Whatever the actual value is, it may never be known to the programmer or machine opera-
tor. The obvious reason is that the value is already built-in inside of the control system, as an ini-
tial or default value. It is established by the machine tool manufacturer as the most suitable general
value, often taken from various surveys of end users. Such a value, established by the machine
tool builder, is normally called the default value. In other words, the settings established by the
factory (the machine manufacturer) are called the default settings that become active when the
control system power is turned ON.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

48 Chapter 4

Default Values Settings

The English word ‘default’ is a derivative of a French word ‘defaut’, that can be loosely trans-
lated as ‘assumed’. When the main power to the control unit is turned ON, there are no set values
passed to the parameters from any program, since no program has yet been processed. However,
certain settings become active automatically, without any external CNC program. For instance, a
cutter radius offset mode is automatically canceled at the startup of the control system. Also can-
celed are the fixed (canned) cycle modes or the tool length offset. The control system ‘assumes’
that certain conditions are preferable to others. Most CNC machine tool operators will probably
agree with the majority of these initial settings, although not necessarily with all of them. Many of
these settings are customizable by a simple change in the parameter settings. Such settings will be-
come permanent, and become the new ‘default’.

We know that a computer is only a machine. It is fast and it is accurate, but it has no intelligence
in human terms. Even artificial intelligence is just that - artificial. A human being, on the other
side, is slow, makes mistakes, but has a unique ability - human being thinks. A computer is a very
sophisticated machine and as such, it does not assume anything - computer does not consider,
computer does not feel, computer does not think. Veteran computer users know that a computer
does not do anything that a human ingenuity has not placed into it in the first place, during the de-
sign and development process.

In the terms of a CNC system operation, when its main power is turned on, the internal software
automatically sets certain preprogrammed parameters to their default condition, as designed and
decided by a human engineer. In the last sentence, the key word was ‘certain’. Not all system pa-
rameters, only certain parameters can have an assumed condition - a particular condition that is
known as the default value or the default condition.

Consider an example that may be both practical and easy to understand at the same time. A tool
motion can have three common modes - it can be a rapid motion, a linear or a circular motion.
The default setting of such a motion is required within the control parameters. Which one of the
three modes should be chosen? The rapid motion, the linear motion, or the circular motion? Only
one of them can be active at the same time - but which one? The answer depends on the parameter
settings. Many parameters have an option to be preset to a desired state. In this example, either
the rapid or the linear mode will be effective automatically when the control power is turned on.
Circular mode is definitely not practical under any circumstances.

To answer the question of 'which one’, look at the consequences of a choice. Many machines
are sold with the /inear motion - GO1 command - as a default, for safety reasons. When the ma-
chine axes are moved manually, the system parameter setting has no effect. If an axis command is
entered manually, either through the program or in the MDI mode, a tool motion will happen. If
the motion command is not specified, the system will use the command mode that had been preset
as the default in the control parameters. Since the assumed mode, the default mode is, in this case,
a linear motion - GO1 - an error condition will result. Why? Because there is no cutting feedrate in
effect, which the GO1 does require. Had the default setting been the rapid motion GOO, there
would be a rapid motion, creating somewhat more risky situation in many applications, as it does
not require feedrate designation - the rapid rate is controlled internally. Both, the CNC program-
mer and the CNC operator should be aware of the default settings of each control unit in the ma-
chine shop. Unless there is a compelling reason to do otherwise, defaults for several control units
should be set identically, if possible, to create a consistent working environment.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

DATA SETTING

In smaller machine shops, job shops or any other environment where stand alone CNC ma-
chines are used, the machine operator typically sets all offset values that have to be input into the
control during the job setup, manually by simply typing them in the proper registers. This com-
mon method is very useful when the programmer does not know the setting values - in fact, this is
the normal situation in most shops that the programmer or machine operator does not know the
actual values of various offsets at the time of programming or machine setup.

Understanding the subject of offset data setting is important for many macro programs

Input of Offsets

In a manufacturing environment that has to be very tightly controlled during production, for ex-
ample in agile and automatic manufacturing, or manufacturing of the same parts in very large vol-
umes, the manual offset data entry during setup is very costly and inefficient. Also, this method
does not provide and efficient means of adjusting the offsets values, for example, for tool wear.
An agile or large volume manufacturing uses modern tools such as CAD/CAM systems for design
and toolpath development, concept of multiple machine cells, robots, preset tools, automatic tool
changing and tool life management, tool breakage detection, pallets, programmable auxiliary
equipment, machine automation, and so on. Unknown elements cannot exist in such environment
- relationships of all reference positions must always be known, and the need for offsets to be es-
tablished and set at each individual machine is eliminated. All the initial offset values are - and
must be - always known to the CNC programmer, well before the actual setup takes place on the
CNC machine.

There is a great advantage in such information being known and used properly - the initial offset
data can be included in the part program and be channeled into appropriate offset registers through
the program flow. There is no operator's interference and the machining process is fully auto-
mated, including the maintenance of tools and related offsets. All offset settings are under the pro-
gram control, including their updates required for position change, or a tool length change, or a
radius change and other similar changes. The offsets are adjusted and updated from the informa-
tion provided by an in-process gauging system that must be installed on the machine and inter-
faced with the control system.

All this automation is possible with several programming aids, often available as an optional
feature of the control system. The main aid is the use of user macros and a feature called Data Set-
ting. Before you can handle macros for the purpose of offset setting and adjustment, you have to
understand the concept of the data setting. As a matter of fact, the control unit may have the data
setting feature without even having the macro option. Don't get discouraged without trying it first.
Even a small machine shop with a single stand alone CNC machine can benefit from this feature,
if it is available. Fanuc control systems use a special preparatory command for data setting - G10.

49

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

50 Chapter 5

Data Setting Command

To select the data setting option and to set offset data through the program, Fanuc controls offer
a special preparatory G command:

G10 Data Setting (Programmable Data Input Function)

In its basic form, this uncommon preparatory command G10 is a non-modal command, valid
only for the block in which it is programmed. 1f it is required in any subsequent blocks, it has to be
repeated in every block.

By itself, the G10 command does not do anything at all. It requires additional input. It has a
simple format that is different for the CNC machining centers and CNC lathes. There are also
some minor differences between formats of different Fanuc controls or Fanuc compatible con-
trols, although the programming methods are logically identical. Formats also vary for the three
different types of the offsets - the work coordinate offset, the tool length offset, and the cutter ra-
dius offset. The examples in this section are for typical Fanuc models and have been tested on
Fanuc 16 MB (they apply to milling and turning control). They will work on many other control
models as well.

Coordinate Mode

Selection of the absolute (G90) or incremental (G91) programming mode has a great impact on
the input of all offset values using the CNC program with the G10 command.

The G90 or G91 can be set anywhere in the program, changed from one to the other, as long as
the block containing the required command is assigned before the G10 data setting command is
called. All types of available offsets can be set through the program, using the G10 command:

[Work offsets ... G54 to G59 (and additional sets, if available)
1 Tool length offsets ... G43 or G44 (G49 to cancel)
[Cutter radius offsets ... G41 or G42 (G40 to cancel)

Absolute Mode

Absolute mode of programming uses the G90 preparatory command for the milling controls and
XZ addresses for turning controls. In the absolute mode, any one of the three programmed offset
values will replace the offset value stored in the CNC system.

Incremental Mode

Incremental mode of programming uses the G91 preparatory command for the milling controls
and UW addresses for turning controls. In the incremental mode, any one of the three programmed
offset values will not replace but only update the offset value stored in the CNC system.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

DATA SETTING 51

Selection of ABSOLUTE or INCREMENTAL mode will affect data setting

All three offset groups can be used in macro programs using the data setting function. It is very
important to understand how each offset group behaves in all conditions. If necessary, review sub-
jects relating to the concept of the work offsets, tool length offset and cutter radius offset (see
Chapter 24 at the end of this handbook for suggestions).

Work Offsets

Standard Work Offset Input

The standard six work offsets G54 to G59 are generally available for both the milling and turn-
ing control systems. However, due to the unique machining requirements, they are normally asso-
ciated with the milling controls. Their programming format is the same for both control types:

Gl0 L2 P- X- Y- Z- Machining centers
Gl0 L2 P- X- Z- Turning centers

The L2 word is a fixed mandatory offset group number that identifies the offset input type as the
work coordinate setting. The P address in this case can have a value from 1 to 6, assigned to the
G54 to G59 selection respectively:

P1 = G54, P2 = G55, P3 = G56, P4 = G57, P5 = G58, P6 = G59

for example,
G90 G10 L2 Pl X-450.0 Y-375.0 z0

will input X-450.0 Y-375.0 Z0 coordinates into the G54 work coordinate offset register (all ex-
amples for this section are in millimeters).

G90 G10 L2 P3 X-630.0 Y-408.0

will input X-630.0 Y-408.0 coordinates into the G56 work coordinate offset register. Since the
Z-value has not been programmed, the current value of the Z-offset will be retained.

All examples above show the absolute programming mode G90 (or XZ), where the offset setting
in the control will be replaced with the one provided in the program. In incremental mode G91 (or
UW), the current offset setting will be updated:

G90 G10 L2 Pl X-450.0 Y-375.0 z0
(...MACHINING CONTINUES...)
G91 G10 L2 P1 X5.0

will first input X-450.0 Y-375.0 Z0 coordinates into the G54 work offset, but after some ma-
chining, only the X-offset will be updated by adding 5 mm to its current value, to X-445.0.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

52 Chapter 5

Additional Work Offset Input

In addition to the standard six work coordinate settings for milling and turning controls, Fanuc
offers an optional set of many additional offsets as an extension of the standard work offsets G54
to G59. This option adds another forty eight work offsets (G54 .1 Px or G54 Px), for the total
of fifty four work offsets (x=1 fo 48)! If so many work offsets seem excessive, just consider a
complex job on a CNC horizontal machining center, where work offset may change with each axis
indexing. These additional work offsets are identified in the CNC program by using the command
G54.1 or G54 along with the address P - compare these three examples:

N3 G90 G54 GOO X50.0 ¥75.0 S1200 MO3 Uses the standard G54 offset
N3 G90 G54.1 P1 GOO X50.0 ¥Y75.0 S1200 MO3 Uses the first additional offset

N3 G90 G54 P1 GOO X50.0 Y75.0 S1200 MO3 Exactly the same as the previous example

Note that for additional offsets, only the G54 .1 or G54 command can be used, not any other.
Whether to use G54.1 P- or G54 P- depends on the control - try them both to find out.

The G10 data setting command can also be used to input offset values to any one of the 48 addi-
tional work offsets and the programming command is very similar to the previous one, except L20
is used instead of the L2:

Gl10 L20 P- X- Y- Z-

Only the fixed mandatory offset group number has changed to another fixed offset group num-
ber, L.20, which specifies the selection of one of the additional work offsets.

Do not confuse the address 'P" in the G10 block with the address 'P' in the G54 block !

External Work Offset Input

Another offset that belongs to the work coordinate system group is called either External or
Common. This offset cannot be programmed normally, using any standard G-code. It can be set
manually in the same work offset area as the G54 + offsets - at the control only - it is the first off-
set on the screen, marked 00, and either with the letters EXT or COM. The latest controls use the
EXT letters, to eliminate confusion with letters related to communications settings. External
(Common) offsets are always added to all other work offsets specified in the CNC program. With
the G10, the external offset can be programmed, and it is normally used to update all work coor-
dinate offsets at the same time (globally). This is a much more efficient way of updating all used
work offsets by the same amount.

The programming format for the G10 input of settings into the external offset uses the L2 offset
group and PO as the offset selection:

G90 G10 L2 PO X-10.0

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

DATA SETTING 53

This program entry will place X-10.0 into the external work coordinate offset, while retaining
all other settings (the Y-axis, the Z-axis, and any additional axes as well). As a result of this up-
date, each work coordinate system used in the active CNC program will be shifted by 10 mm into
the X-negative direction.

The other two offset groups, one for the tool length, the other for the cutter radius, can also be
set by the G10 command. However, there is an additional subject you have to fully understand,
before using the G10 command for those two offset groups. The subject covers the memory types.

Offset Memory Types - Milling

During the development of more advanced CNC technology, Fanuc controls have introduced
three, progressively more advanced, types of memory to store tool length and tool radius offsets.
The three stages are known as the Memory Type A, Memory Type B, and Memory Type C, refer-
ring to the type of offset memory.

They have these characteristics on the display screen of the control system:

Memory Type Characteristics
Type A One display column, shared by the length and radius offsets
Type B Two display columns, one for the length offset and one for the radius offset
Type C Four display columns, two for the length offset and two for the radius offset

In offsets are applied in macro programs, we deal with two important criteria - the size of the
tool (length or radius) and the amount of wear on the tool (length change or a radius change). The
terms Geometry Offset and Wear Offset are used frequently in this application, and may require
some clarification.

Geometry Offset

For the tool length, the geometry offset stores the actual preset length of the tool, or the actual
amount measured during setup. In a program, the length offset is called with the address H.

For the tool radius, the geometry offset stores the known (nominal) radius of the cutter (typi-
cally one half of the specified diameter). In a program, the radius offset is called with the address
D but can also be called with the address H.

Wear Offset

As the name suggests, the wear offset is the amount of deviation from the measured value (i.e.,
from the geometry offset). Do not take the name literally. Wear means tool wear, yes, but it also
means an amount of deviation for any other reason, for example, a deviation due to resharpening
of the tool or due to cutting pressures.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

54 Chapter 5

Which Offset to Update?

When a tool length or a tool radius offset value needs an adjustment for various reasons, the
question is which offset to adjust. This question needs no answer for the memory Type A, but the
answer is important for memory Type B and Type C. Both of these types offer two groups of ad-
justment, one for geometry, the other for wear.

& This example illustrates the offset update options (memory Type B is used):

In the program, tool length offset number HO3 is used. In the control system, the Geometry set-
ting for offset 03 is -198.000 and the Wear setting is 0.000. The 198 mm tool-to-part distance has
either been measured at the CNC machine or entered from a presetting device. This distance rep-
resents the initial conditions of the tool setup, the 'normal’ condition. Since it represents the rela-
tionship between the machine and the cutting tool, it should be entered into the Geometry offset.
Virtually all CNC operators will do that as a matter of routine.

While the tool provides correct cutting depth for many parts, eventually it may need an slight
adjustment, because the depth becomes a bit shallow. The tool itself does not need sharpening, but
the length offset needs an adjustment of 0.125 mm, in order to compensate for the shallow depth.
The tool has to be forced to move down, into the material, by additional 0.125 mm. There are two
options the CNC operator can choose from - either the Geometry offset is changed from -198.000
to -198.125 or the Wear offset is changed from 0.000 to -0.125. The result will be exactly same
with either method - and hence the question - which offset to update?

Many CNC operators have the habit of changing (updating) the Geometry offset all the time,
leaving the Wear offset intact and ignored. In automated machining, particularly when working
with custom macros, this is the most undesirable approach, because the original setting - the one
that was physically measured - the original offset value, will be lost. As a rule, always make ad-
justments to the Wear offset and leave the Geometry offset alone. This way, both values are pre-
served and offset settings are better controlled.

NOT RECOMMENDED RECOMMENDED _
Figure 9
Effect of adjustment to the
OFFSET OFFSET
NUMBER |CEOMETRY| WEAR Il | \\1BER [GEOMETRY| WEAR Geometry and Wear offsets
03 -198.125 0.000 03 -198.000 |-0.125

The comparison between two offset entries is shown above (for memory Type B) - Figure 9.

In custom macros, selecting the wrong offset to be updated can cause serious problems

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

DATA SETTING 55

Memory Type A

This is the oldest memory type that reflects CNC technology of its time. Any length and radius
offset setting is placed in the same column of offsets - the same register area of the control system.
For the memory Type A, there is only a single column of offsets available - see Figure 10 :

Figure 10
OFFSET | GEOMETRY
NUMBER| & WEAR Offset memory Type A
01 0.000 Geometry and Wear offsets are shared
02 0.000 in a single column.
82 888g Tool length and tool radius must
05 0'000 use different offset numbers

Ideally, each program address should represent a unique meaning. That is not always possible,
and this a good example of such a situation. When both tool length and tool radius offsets are in-
cluded in the same program for a certain tool (a common occurrence), each should use a different
address (letter). That also requires two registers to store the offset data in the control system. With
a single memory registry, only one column offset memory is available (called Type A). The result
is that the tool length offset and the tool radius offset will both use the H-address, with two differ-
ent offset numbers. Several control models do allow the use of the H-address for the tool length
offset number and the D-address for the tool radius offset number, but they cannot have the same
number. Typically, the numbers are arbitrarily shifted by a certain amount, for example, by 25 or
50, depending on the total number of offsets available in the registry.

&« Examples:

Tool T04 uses HO4 for tool length and H54 for the tool radius offset (only H can be used):
G43 z22.0 HO4 Offset number 04 used for tool length - H address
GOl G41 X123.0 H54 F275.0 Offset number 54 used for tool radius - H address

Tool TO4 uses HO4 for tool length and D54 for the tool radius offset (both H and D can be used):

G43 z22.0 HO4 Offset number 04 used for tool length - H address
G0l G41 X123.0 D54 F275.0 Offset number 54 used for tool radius - D address

The selection of the actual offset number is the programmer’s decision - most programmers
choose the tool number and tool length offset number the same, for convenience. The offset mem-
ory Type A is still very common, not only on older machine tools, but on newer machine tools us-
ing the controls with limited features, such as Fanuc 0 model controls. Always check if H and D
can be used in the same program, when only Type A offset memory is available at the control.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

56 Chapter 5

Memory Type B

The memory Type B has been a great improvement on the Type A, because it separates the ge-
ometry and the wear offsets into separate columns, for better offset management. Still, it does not
separate the tool length and the tool radius entries into separate columns. Figure 11 shows two
columns for the offset entry of Type B offset memory, sharing the same offset number:

Figure 11
OFFSET
NUMBER | GEOMETRY | WEAR Offset memory Type B
o1 0.000 0.000 Geometry and Wear offsets are
02 0'000 OIOOO separated into two columns.
82 8888 8888 Tool length and tool radius must
05 0'000 0.000 use different offset numbers

Because of the separation of geometry and wear offsets into two columns, the control of offset
data entries is somewhat simplified. At the same time, the actual programming input still does
require two different offset numbers for the same tool - H-offset number and D-offset number.

The real benefit of this type of offset memory is more oriented towards the CNC operator,
rather than the CNC programmer. At the machine, the CNC operator can make changes to the
wear offset, without disturbing the geometry offset.

The programming structure itself (the program input) is exactly the same as for Type A4:

&« Examples:

Tool T04 uses HO04 for tool length and H54 for the tool radius offset (only H can be used):
G43 z2.0 HO4 Offset number 04 used for tool length - H address
GO0l G41 X123.0 H54 F275.0 Offset number 54 used for tool radius - H address

Tool T04 uses HO4 for tool length and D54 for the tool radius offset (both H and D can be
used):

G43 z22.0 HO4 Offset number 04 used for tool length - H address

GO0l G41 X123.0 D54 F275.0 Offset number 54 used for tool radius - D address

The offset numbering method follows the same logic as for Type A (after all, it is almost identi-
cal). The part programmer decides the most convenient (comfortable) method. In all cases of off-
set numbering, it is important to carefully select the programming method first, then follow it
consistently from one program to another, by all programmers in the company.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

DATA SETTING 57

Memory Type C

The latest (and the greatest) type of offset memory is the Type C. It is a much improved input
method, based on Type B - it offers extreme programming control and flexibility during machine
operation. Type C offset memory contains geometry and wear offset registers that are independent
of each other - they are different for the tool length offset and the tool radius offset data. In normal
practice, that means the total of four display columns on the control system screen - Figure 12.

Figure 12
NUMEBEF i D Offset memory Type C
NUMBER |GEOMETRY| WEAR |GEOMETRY| WEAR
01 0.000 0.000 0.000 0.000 Geometry and Wear offsets are
02 0.000 0.000 0.000 0.000 separated
03 0.000 0.000 0.000 0.000 into two columns for each offset type.
04 0000 | 0.000 | 0000 | 0000 || Toolengthand tool radius may use the
05 0.000 0.000 0.000 0.000 same offset numbers.

&« Example:

Tool T04 uses HO4 for tool length and D04 for the tool radius offset (both H and D can be
used):

G43 z22.0 HO4 Offset number 04 used for tool length - H address
G01 G41 X123.0 D04 F275.0 Offset number 04 used for tool radius - D address

This is the most advanced method of CNC programming of length and radius offsets, because
the control systems that support it - offer convenience and flexibility to both, the CNC program-
mer and the CNC machine tool operator. There is no need to shift one offset number by 25 or 50
numbers - they are both the same, both using its own offset register. There is no need to worry
whether to use the H-address or the D-address - in Type C offset memory, the H-address will al-
ways be used for the tool length offset, the D-address will always be used for the radius offset -
and can both have the same offset number.

Memory Type and Macros

It is very important to understand the offset memory types, because when writing a custom
macro program that uses either the tool length or the tool radius offset (or both), the macro will
have to reflect the differences of each offset type. That also means a particular macro will not be
transferrable to a different machine control system, unless it also includes a multiple choice that
covers the available offset memory types.

Offset memory type determines the macro structure for length and radius offsets

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

58 Chapter 5

Offset Memory Types - Turning

There are only two types of offset memory available for the Fanuc turning controls (those used
for CNC lathes and turning centers) - the Type A and the Type B memory offsets - they are similar
to their milling counterparts with a few changes. As there is no tool length offset equivalent for
turning applications, there is also no Type C offset memory available on turning controls. The
memory Type A is considered old and impractical, particularly for lathe macros - it lacks many
important features and is present on some old lathes only. Most CNC lathes and turning centers
today use the offset memory Type B, which occupies two distinct screens on the CRT display. One
screen is the Geometry offset setting, the other is the Wear offset setting. They are very similar,
and CNC operators often make the mistake of inputting data into the wrong screen (as often hap-
pens on milling controls as well). All control models remind the user of the active screen dis-
played by the words GEOMETRY or WEAR at the screen top, and some controls even precede the
offset number with the letter G for Geometry offset number and the letter W for the Wear offset
number. As always, make sure to check the control system manual for relevant details - changes
in the control software happen fairly frequently and are usually included only in the latest control
models - controls come in many varieties, some rather very small, yet important.

In the next illustration - Figure 13 - a typical screen view displays the contents of the Geometry
offset for a CNC lathe unit, using the Type B offset memory settings.

Figure 13
GEOMETRY| X-AXIS Z-AXIS | TOOLNOSE |10 TiP ’
OFFSET |GEOMETRY | GEOMETRY| RADIUS Lathe offset memory Type B
NUMBER | OFFSET | OFFSET |GEOMETRY|NUMBER GEOMETRY
G 01 0.000 0.000 0.000 0.000 The Tool Nose Radiss s
G 02 0.000 0.000 0.000 0.000 normally dentfied by the
G 03 0.000 0.000 0.000 0.000 etter R, and the maginary
G 04 0.000 0.000 0.000 0.000 Tool Tip Number is identified
G 05 0.000 0.000 0.000 0.000 by the letter T

A virtually identical screen display - Figure 14 - shows the Geometry offset screen. It contains
the lathe Wear offset screen, also using the Type B offset memory setting.

Figure 14

WEAR X-AXIS Z-AXIS TOOLNOSE | 1oL TP ’
OFFSET WEAR WEAR RADIUS NUMBER Lathe offset memory Type B
NUMBER OFFSET OFFSET WEAR ... WEAR

W 01 0.000 0.000 0.000 0.000 The Tool Nose Radius is

W 02 0.000 0.000 0.000 0.000 normally identified by the

W 03 0.000 0.000 0.000 0.000 letter R, and the imaginary

W04 0.000 0.000 0.000 0.000 Tool Tip Number s identfied

W 05 0.000 0.000 0.000 0.000 by the letter T

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

DATA SETTING 59

Adjusting Offset Values

A brief mention of how the currently set coordinate modes influence any offset setting, was al-
ready mentioned earlier in this chapter. During a typical CNC machine operation, the operator
regularly adjusts the current offset values. This adjustment is based on the result of a reliable mea-
surement, regardless of the reason that may have caused the adjustment in the first place. The
same adjustment can be done automatically, using macros and some additional machine hardware.

The most important key to understanding the offset value adjustment is the mode of data entry -
is it absolute or is it incremental? Both offer certain advantages, and it is very important to under-
stand them well, particularly for macro program development.

In the following few paragraphs, there are several examples that will illustrate the differences.

Absolute Mode

In the absolute mode of programming (G90 for milling or XZ for turning), the selected offset
will be REPLACED by the entered value in the program (or manually, at the control).

& Absolute mode example (G90 or X2):

Current offset value: 345.000
Input value: 350.000
New offset value: 350.000

If you make a mistake, the original setting is lost forever - be careful. Remembering the original
value may be difficult, but writing it down before the change may prevent many problems.

Incremental Mode

In the incremental mode of programming (G91 for milling or UW for turning), the selected
offset will be UPDATED by the entered value in the program (or manually, at the control).

& Incremental mode example (G91 or UW):

Current offset value: 345.000
Input value: 5.000
New offset value: 350.000

In case of an input error, the odds are little better for incremental input than absolute input of
offsets. As long as you remember the incremental value used for the offset adjustment, you can al-
ways revert to it, in case of an erroneous input.

Macro programs will accept either method of coordinate input and will behave exactly the
same, as if the part program were written in the so called 'normal' mode, without using macro
statements. Keep in mind that macro programming only amplifies the slow manual process - it
uses the same logical tools and procedures available in manual programming.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

60 Chapter 5

Tool Offset Program Entry

Tool length offset value for a CNC milling control system that supports the G10 command, can
be programmed using the G10 command together with the L offset group. Depending on the
memory type a particular control system offers, the L offset group may have a different number.
The three types of offset memory on Fanuc controls, for the tool offsets (length and radius), have
different entries and are illustrated in the following examples:

¢ Memory A (only one column for length offset and radius offset)

Offset entry: Combined Geometry + Wear offset amount Program
entry: Offset amount set by G10 L11 P- R- block

¢ Memory B (two columns for length offset and radius offset)

Offset entry 1: Separate Geometry offset amount Program entry 1:
Offset amount set by G10 L10 P- R- block

Offset entry 2: Separate Wear offset amount Program entry 2:
Offset amount set by G10 L11 P- R- block

¢ Memory C (two columns for length offset and two columns for radius offset)

Offset entry 1: Separate Geometry offset amount - applied to H-address
Program entry 1: Offset amount set by G10 L10 P- R- block

Offset entry 2: Separate Geometry offset amount - applied to D-address
Program entry 2: Offset amount set by G10 L12 P- R- block

Offset entry 3: Separate Wear offset amount - applied to H-address
Program entry 3: Offset amount set by G10 L11 P- R- block

Offset entry 4: Separate Wear offset amount - applied to D-address
Program entry 4: Offset amount set by G10 L13 P- R- block

L-Address

In all examples illustrated, the L address number is the arbitrary (fixed) offset group number
(that means it is fixed within the particular Fanuc control system by the manufacturer), and the P
address is the offset register number (used by the CNC system) - the R value is the actual amount
of the selected offset to be transferred into the selected offset number registry. Absolute and incre-
mental modes have the same effect on the tool length and radius programmed input, as for the
work offset, described earlier in this chapter. Some additional practical examples of various offset
data settings, using the G10 preparatory command, should illustrate this topic even further.

NOTE: Older Fanuc controls used the address L1, instead of the newer L11. These controls did
not have a wear offset as a separate entry. For the compatibility with several older controls, LI is
accepted on all modern controls in lieu of L11.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

DATA SETTING 61

G10 Offset Data Settings - Milling Examples

This section illustrates some of the common examples of G10 offset data settings used in a pro-
gram (standard or macro) for CNC machining centers. Block numbers are used for convenience.

&« Example 1:

Block N50 will input the amount of negative 468.0 mm into the tool length offset register 5:

N50 G90 G10 L10 P5 R-468.0

« Example 2:

If this offset needs an adjustment to cut 0.5 mm less depth, using the tool length offset 5, the
G10 block will have to be changed to incremental mode:

N60 G91 G10 L10 P5 RO.5

Note the G91 incremental mode - if the blocks N50 and N60 are used in the listed order, then
the registered amount of offset number 5 will be -467.5 mm.

&« Example 3:

For memory Type C, the cutter radius value D may be passed to the selected offset register from
the CNC program, using the G10 command with L12 (geometry) and L13 (wear) offset groups:

N70 G90 G10 L12 P7 R5.0 ... inputs 5.0 mm radius amount into the geometry offset register 7
N80 G90 G10 L13 P7 R-0.03 ... inputs -0.03 mm radius amount into the wear offset register 7
The combined effect of the two entries will be the equivalent of cutter radius 4.97 mm.

« Example 4:

To increase or decrease a stored offset amount, use the incremental programming mode G91.
The example in block N80 will be updated, by adding 0.01 mm to the current wear offset amount:

N90 G91 G10 L13 P7 RO.01

The new setting in the wear offset register number 7 will be 0.02 mm and the combined effect
of both offsets number 7 will be the equivalent of cutter radius 4.98 mm (after blocks N70, N80
and N90 were processed). Always be careful with the G90 or G91 modes - it is recommended to
reinstate the proper mode immediately after use, for any subsequent sections of the program.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

62 Chapter 5

Valid Input Range

On most CNC machining centers, the range of the ool length or the tool radius offset values is
limited to a range specified by the Fanuc control. The input range of the offset input values is very
wide and sufficient for all work. Note that the metric and English amounts vary only by a shifted
decimal point, not by actual units conversion:

Offset Input Lowest amount Highest amount
GEOMETRY - Metric -999.999 mm +999.999 mm
WEAR - Metric -99.999 mm +99.999 mm
GEOMETRY - English -99.9999 inches +99.9999 inches
WEAR - English -9.9999 inches +9.9999 inches

The number of available offsets in the control system is also limited, with a typical minimum
number of offset usually no less then 32. Optionally, the CNC system can have 64, 99, 200, and
400 offsets available - and more - most of them as a special option. It is important that to know the
maximum number of offsets for each control system in the shop. As a simple rule, there will be
(or should be) always more offsets available than the maximum number of tools the machine has.

Lathe Offsets

Tool length offset is a feature found on CNC machining centers and normally does not apply to
the CNC lathes, because of a different tool and offset structure. Most CNC lathes use the Group A
of G-codes (XZR for absolute input, UWC for incremental input) for programming and data set-
ting. For such a CNC lathe, the G10 command can be used to set offset data, using the following
program formats (one or more axis specification):

Gl0 P- X- Y- Z- R- Q- Absolute mode of programming
Gl0 P- U- V- W- C- Q- Incremental mode of programming
I where...

G10 Programmable data input command

Offset number to set (P + 10000 = geometry, P + 0 = wear)
Absolute value of the offset register - X-axis

Incremental value of the offset register - X-axis

Absolute value of the offset register - Y-axis (if available)
Incremental value of the offset register - Y-axis (if available)
Absolute value of the offset register - Z-axis

Incremental value of the offset register - Z-axis

Absolute value of the offset register - tool nose radius
Incremental value of the offset register - tool nose radius
Tool tip number for radius offset (imaginary tool tip number)

DO:DEN<-<C><'U

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

DATA SETTING 63

P-Offset Number

Note the comment next to the P-address - the P-address represents either the geometry offset
number or the wear offset number to be set. To distinguish between the geometry offset and the
wear offset, the geometry offset number is increased by an arbitrary amount of 10000:

e« P10001 ... represents the selection of geometry offset number 1

« P10012 ... represents the selection of geometry offset number 12

If the 710000 value is not added, the P-address represents the number of the wear offset:
e P6 ... represents the selection of wear offset number 6

e P11 ... represents the selection of wear offset number 11

The number of available offsets depends on the control system. For example, Fanuc 16/18/21
controls have up to 64 offsets available.

Tip Number Q

The imaginary tool tip number (sometimes called the virtual tip number or just tip number) has
been arbitrarily defined by Fanuc. For the rear type CNC lathes, the Figure 15 illustrates the fixed
numbers assigned to nine possible tool tips:

Figure 15

Tool nose tip numbers 0-9, programmed
in the Q-address of the G10 command

TOor T9

< F

Tn Tool tip number
® Tool reference point
Tool nose radius L 2

The above tip numbers refer only to the rear lathe type, as shown by the axis orientation symbol.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

64 Chapter 5

G10 Offset Data Settings - Turning Examples

Data setting for lathe controls has a little different structure, but the control system processes it
with the same built-in logic. Typical examples of offset data setting for a CNC lathe are shown,
along with expected results. The listing is based on the order of input in the program:

&« Example 1:

Block N10 will clear all geometry offsets for G 01 group (the geometry offset 1 register)
N10 G10 P10001 X0 z0 RO QO

Block N20 will clear all wear offsets for W 01 group (the wear offset 1 register)
N20 G10 P1 X0 zZ0 RO QO

1= Using @0 in G10 block will cancel BOTH tool GEOMETRY and tool WEAR tip numbers

« Example 2:

Block N30 will set the contents of G 0 group to X-200.0 Z-150.0 RO.8 T3. It will also
set the tool tip number 3 in the wear group W 01 - automatically !

N30 G10 P10001 X-200.0 Z-150.0 RO.8 Q3

e« Example 3:

Block N40 will set the wear group W 01 tool nose radius to the value of 0.8, while the current
tool tip number 3 is still active (not listed means not changed):

N40 G10 P1 RO.8 Current tool tip number setting IS assumed

In professional programming, it is much safer to program without assumptions of current values
and include the required tip number in the block, just in case - compare block N50 to N40:

N50 G10 P1 RO.8 Q3 Current tool tip number setting IS NOT assumed

&« Example 4:

Block N60 sets the wear group W 01 to X-0.12, regardless of its previous setting:

N60 G10 P1 X-0.12

while the block N70 updates the current value of X-0.12 by the increment of U+0.05, to the
new offset register value of X-0.07:

N70 G10 P1 U0.05

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

DATA SETTING 65

Note that the tool tip number (programmed in the G10 application as the Q entry) will always
change the geometry offset and the wear offset simultaneously, whatever the value or the offset
type is. There is a simple and very logical reason for it - it is a control built-in safety that attempts
to eliminate data entry error (manually or automatically). It is impossible to have a different ge-
ometry and wear tool tip numbers for the same physical tool. Data related to axes or the tool nose
radius may have different geometry and wear offset values, because they relate to dimensions.

Data Setting Check in MDI

Programming offset values through the standard or macro program requires full understanding
of the data input format for a particular control system. It is too late when an incorrect setting
causes a damage to the machine or the part. One way to make sure the offset data setting is correct
is to test it. Such a test is very easy to perform in the MDI (Manual Data Input) mode of the con-
trol system. An single word or the whole block can be entered in the MDI mode to test the input,
before committing the data into the program. Select the Program mode and the MDI mode at the
control unit, then insert the input data to check - for example:

G90 G10 L10 P12 R-106.475

(1 Press INSERT
(1 Press CYCLE START

To verify the accuracy of the input, check the tool length offset H12 - it should contain the
stored amount of -106.475. Still in the MDI mode, update the preset data - for example:

G91 G10 L10 P12 R-1.0

(1 Press INSERT
1 Press CYCLE START

To verify the accuracy of the input, check the tool length offset H12 again -it should contain the
stored amount of -107.475.

Other tests should follow the same process. Always select the test data and offset numbers care-
fully, so they cannot cause any damage.

Programmable Parameter Entry

This section covers yet another aspect of programming the G10 data setting command - this
time as a modal command. It is used to change a system parameter through the standard or macro
program. This application is sometimes called the ‘Write to parameter function’, and is not very
common in everyday programming, even in macros. Before you attempt to use this method, make
sure you fully understand the concept of control system parameters section, described earlier in
this handbook - see previous chapter for details.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

66 Chapter 5

Incorrect setting of CNC system parameters may cause irreparable damage to the machine tool

Typical uses of the G10 command are common to changes of machine or cutting conditions, for
example, spindle speed and feedrate time constants, pitch error compensation data, and others.
This command often appears in the cusfom macros, normally called by the G65 command, and its
sole purpose is to control the machine operations. The subject and detailed explanation of the Cus-
tom Macros and their structure is covered in the next chapter - G10 is just a small item of the basic
knowledge before using macros.

Modal G10 Command

When the G10 command for the offset data setting was first introduced in this chapter, it had to
be repeated in each block, if a series of setting were required. By definition, G10 data setting
command for the entry of offsets can only be used as a non-modal command. Modern Fanuc con-
trols also allow to do another type of data change through the program - the change of the CNC
system parameters.

Without the machine user even knowing, many program entries are automatically converted to
various system parameters by the control unit. For example, if the program contains G54 work
offset, its current setting can be found on the work offset screen. This display is for the operator's
convenience only - the actual storage of the offset amount takes place in a system parameter, iden-
tified by a parameter number, as assigned by Fanuc. Even if the G54 setting is changed manually,
through the offset screen, or through a parameter change (using the proper parameter number), it
is always stored in the system parameter. Some parameters cannot be changed as easily - some
cannot be changed at all - the modal G10 command can be very useful for changing several pa-
rameters at the same time. In fact, to achieve this goal, two related commands are required - G10
to start the settings and G11 to cancel the settings:

G1l0 L50 Selecting parameter setting mode ON
. Data setting single block or a series of blocks (typical use)
Gl1 Selecting parameter setting mode OFF

The data setting block for a programmable parameter setting has three entries:

G10 L50
N.. P.. R.. Data setting block - more than one block is allowed between G10 and G11
G1l1
= where ...
G10 Data setting mode - ON
L50 Programmable parameter entry mode (fixed)
N.. P. R.. Data entry specification (N=parameter number, P=axis number, R=setting value)
G111 Data setting mode - OFF (cancel)

Between the G10 L50 and G11 blocks is the list of parameters to be set, one per block. The pa-
rameter number uses the N-address and the data uses P and R address respectively.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

DATA SETTING 67

N-address in G10 L50 Mode

The first of the three addresses, the N-address identifies the parameter number to be changed.
Not all parameters can be changed. Fanuc provides Parameter Manual for every control model
available, listing all parameters and their various states. Examples of typical application of the
N-address (as well as the P and R addresses) are described in the next section.

P-address in G10 L50 Mode

The P-address is used only for parameters relating to one of the four available axis inputs:

(1 Bit axis

(J Byte axis

d Word axis

(d Two-word axis

If the parameter does not relate to an axis, the P-address is redundant and does not have to be
programmed in the block. If more than one axis is required to be set at the same time, use multiple
N.. P.. R.. entries between G10 and G11 (see examples further in this chapter).

R-address in G10 L50 Mode

The address R in the G10 L50 mode contains the new value to be registered into the selected
parameter number and must always be entered (no defaults). The valid range listed above must al-
ways be observed. The R-address may also define pitch error data. Note the lack of decimal points
in all examples shown.

Program Portability

Program portability refers to the structure and contents of a program as it relates to its applica-
tion on different machines and/or control systems. CNC programs containing even a single pro-
grammable parameter entry should be used only with the machine tool and control unit for which
they were designed. Use extreme care before using such a program on different machines.

Parameter numbers and their meaning on different control models are not always the same, so
the exact model and its parameter numbers must be known during the program development. For
example, on Fanuc 15 control, the parameter controlling the meaning of an address without a dec-
imal point is #2400 (Bit #0). The parameter that controls the same setting on Fanuc 16/18/21
control models is #3401 (Bit #0) - O=the least input increment is assumed, 1=the applicable unit
is assumed.

The following examples illustrate various programmable parameter entries and have been tested
on a Fanuc 16B control - both lathe and mill versions. The selected parameters are used for illus-
tration only, not necessarily as typical applications or even common applications.

Testing these parameters on your machine is generally not recommended because of their poten-
tially harmful nature.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

68 Chapter 5

« Example 1:

This example changes the baud rate setting of the Input/Output device (RS-232 interface), if the
I/0 Channel is set to O:

G10 L50
N0103 R10
Gl1l

Parameter that controls the baud rate setting for a selected device has a number #103, identi-
fied as NO103 in the above example. Baud rate specifies the speed of program data transfer rate in
characters per second (cps). From a table supplied in the Fanuc operation reference manual, the
required R-value can be entered within the specified range - range of 1 to 12 selections is shown:

1: 50 baud 5: 200 baud 9: 2400 baud
2: 100 baud 6: 300 baud 10: 4800 baud
3: 110 baud 7: 600 baud 11: 9600 baud
4: 150 baud 8: 1200 baud 12: 19200 baud

In the above example, the baud rate setting of 4800 characters per second has been selected, be-
cause R10 in the sample block refers to the selection number 10. This type of baud rate setting is
fairly common, and when working with several machine tools, it should also be the common set-
ting for all CNC machine tools in the shop that require the RS-232C interface for program up-
loading and downloading (DNC). Always choose the fastest baud rate that guarantees 100%
transfer accuracy of the CNC program or other settings between the CNC system and an external
computer. Note absence of the P-address - as the parameter #103 does not relate to a machine
axis, the P-address is not required.

« Example 2:

In another example, parameter #5130 controls the chamfering distance for thread cutting cy-
cles G92 and G76 (lathe controls only). The data type is a non-axis byte, unit if the data is 0.1 of a
pitch and the range is 0 to 127.

G10 L50
N5130 R1
Gl1l

This program segment will change the parameter #5130 to 1. It does not matter what the cur-
rent setting is, it will become 1 or remains as 1, if that happens to be the current value. The
chamfering amount will be equivalent to one pitch of the thread, in the increments of 0.1 pitch. As
a reminder, do not confuse a byte with a bit - byte is a value 0 to 127 or 0 to 255 for the byte axis
type, bit is a certain state only (0 or I, OFF or ON, DISABLED or ENABLED, Open or Closed,
etc.); i.e., selection of one of two options available.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

DATA SETTING 69

« Example 3:

Another example of a system parameter change is for the entry of a two-word parameter type
(long integer). It will change the work coordinate offset G54 to X-250.000:

G90

G1l0 L50

N1221 P1 R-250000
Gl1l

This is another method, one that differs from the one described earlier. Parameter #1221 con-
trols the G54, #1222 controls the G55, and so on. P1 refers to the X-axis, P2 refers to the
Y-axis, and so on, up to 8 axes. Because the valid range of a long integer (two-word type) is re-
quired, a decimal point cannot be used. Since the setting is in metric system, and one micron
(0.001 mm) is the least increment, the value of -250.000 will be entered as -250000. Be careful
with the input of zeros - one zero too many or one zero too few could cause a major problem.
Speaking from experience, this type of error is not always easy to discover. The following version
of the example is NOT correct, and will result in an error:

G90

G10 L50

N1221 Pl R-250.0 Decimal point is not allowed in the R-address
G1l1

Correct input is without the decimal point, as R-250000. An error condition (control alarm) will
also be generated if the P-address is not specified. For example,

G90

G1l0 L50

N1221 R-250000
Gl1l

will generate an error condition (alarm) - the parameter P is missing.

&« Example 4:

The last example is similar to the previous one, but modified for two axes values:

G90

G10 L50

N1221 P1 R-250000
N1221 P2 R-175000
Gll

If this example is used on a lathe control, the address P1 is the X-axis, the address P2 is the
Z-axis. On a machining center, the address P1 is the X-axis, the address P2 is the Y-axis, and the
address P3 will be the Z-axis, if required. In either case, the first two axes of the G54 setting will
be -250.0 (X) and -175.0 (Y) respectively.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

70 Chapter 5

Setting Machine Axes to Zero

Sometimes it is necessary to set all available axes in the work offset to zero. This may be done
with the standard offset setting - the three basic axes shown:

G90 G10 L2 Pl X0 YO z0 Application for a milling control

the same setting an also be written directly to a parameter, also as applied to a milling control:

G90

G10 L50

N1221 P1 RO (SET G54 X-COORDINATE TO 0)
N1221 P2 RO (SET G54 Y-COORDINATE TO 0)
N1221 P3 RO (SET G54 Z-COORDINATE TO O0)
Gl1

Note the difference in programming format for the two methods.

Bit Type Parameter Example

The following example has been already mentioned earlier, albeit briefly. It is quite harmless,
and may be used as a test (as long as you are careful about settings for other parameters). Its pur-
pose is to set automatic block sequencing ON (for example, N1, N2, N3, ...), when keyboarding a
CNC program at the control. It also serves as a good illustration of a bit-type parameter and some
general thoughts and considerations that go into the program preparation that includes program-
mable parameter entry mode.

On Fanuc 16/18/21 (and many of the other models as well) is a feature that allows automatic en-
try of sequence numbers, if the program is entered from the keyboard. This feature is intended as
a time saving device for manual entry of program data. In order to enable this feature, the parame-
ter that controls the ON/OFF status of the feature has to be known and selected. On Fanuc models
16/18/21 (Model B), it is the parameter number 0000 (same as 0).

This is a bit-type parameter (not a byte-type), which means it only contains eight bits. Each bit
has its own meaning. Bit #5 (SEQ) controls the state of the automatic sequence numbering (ON or
OFF is the same as I or 0, but only a number may be input). An individual bit cannot be
programmed, the single data number of all eight bits must be specified. That means all the other
bits have to be known in order to change only a single one. In this example, the current setting of
parameter O is listed in eight independent bits, four with assigned meaning:

SEQ INI ISO TvVC
0000 #7 #6 #5 #4 #3 #2 #1 #0
0 0 0 0 1 0 1 0

The meaning of other parameters is irrelevant for the example, although important in the con-
trol for other operations. The bit #5 is set to 0, which means the automatic block numbering is
disabled. Remember the numbering of the parameter bits - from right to left, starting at 0.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

DATA SETTING 71

The following example of a program segment is an entry that will turn ON the bit #5 of the pa-
rameter #0000, without changing the other bits:

G1l0 L50
NO R00101010
Gl1l

The resulting entry in the parameter screen will reflect that change:

SEQ INI ISO TvVC
0000 #7 #6 #5 #4 #3 #2 #1 #0
0 0 1 0 1 0 1 0

Note that all bits had to be written. Even if it looks that way, the job is not done yet. Fanuc con-
trols offer an additional feature - the increment amount for the numbering can also be selected, for
example, selection of 10 will use N10, N20, N30 entries, selection of 1 will use N1, N2, N3, and
so on. For the example, we will select the increment of 5, to appear as N5, N10, N15, etc., on the
control screen. The increment has to be set in the control - yes, by another parameter number. On
Fanuc 16/18/21, the parameter number that contains the automatic numbering value is #3216.
This is a word type parameter, and the valid range is 0 to 9999. This parameter can only be acti-
vated by setting the bit #5 in parameter 0000 to 1. Program segment will look like this:

G10 L50
N3216 R5
Gl1l

These examples demonstrate how some parameters are connected. All is done in quite a logical
and simple way, but it does take a little time to get used to it. Once these settings are completed,
there is no need to enter block numbers in any program that is entered via the control panel key-
board, usually in the Program mode. Anytime the End-Of-Block key (EOB) is pressed, the
N-number will appear automatically, in the increments of 5, saving the keyboarding time during
manual program input.

The idea behind the G10 being modal in the programmable parameter entry mode is that more
than one parameter can be set as a group. Since the two parameters in the example are logically
connected, it makes sense to create a single program segment, with the same final results as the
two smaller program segments described earlier:

G1l0 L50

NO00OO R00101010
N3216 R5

G1l1

As neither parameter is the axis-type, the address P was not needed, therefore, it was omitted.
The NOOOO is the same as NO, and was used only for better legibility.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

72 Chapter 5

Differences Between Control Models

Although the model numbers do not indicate it, Fanuc 15 system is a higher control level than
the Fanuc 16/18/21 systems. On Fanuc 15, the parameter number that selects whether the auto-
matic sequencing will enabled is #0010, bit #1 (SON).

Being a higher control, there is also more flexibility on Fanuc 15 - for example, the initial se-
quence number can be controlled with parameter #0031 (there is no equivalent on Fanuc
16/18/21 model), and the parameter number that stores the increment amount is #0032, with the
same program entry styles as already shown. Also, on Fanuc system 15, the allowable range of
sequence numbers is higher up to 99999.

This is a typical example of a difference between two similar controls, even from the same con-
trol manufacturer.

Effect of Block Numbers

Many CNC programs include block numbers, identified by the address N. It would be perfectly
natural to assign block numbers to the last example. After all, entry of data is a valid CNC pro-
gram segment - for example:

N121 G10 L50

N122 NOOOO R00101010
N123 N3216 R5

N124 G1l1

Will the program work as shown? One of the basic rules of block sequencing is that only one
N-address can be in a block, as the first address. What do you think? Will it work?

There are now two different N-addresses in the blocks N122 and N123. How does the control
handle this situation? Rest easy - there will be no conflict whatsoever!

In case of two N-addresses in a single block between G10 and G11, the first N-address is al-
ways the block number (basic rule), the second N-address in the same block is the parameter num-
ber. The control system can interpret the apparent discrepancy without a problem. If there is only
one N-address between G10 and G11 blocks, it always applies to the parameter number. If there
are two N-addresses in the block, the first one is the block number, the second one is the system
parameter number.

Block Skip

Normal block skip symbol (/) can be used to control data blocks processing, but be careful
when this function is used in macros, particularly if the control allows block skip function in the
middle of a block. See Chapter 24 for details.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACRO STRUCTURE

Developing macro programs is not much different from development of standard CNC pro-
grams, at least not in the general approach. Before macro programs can developed, study
carefully the many ‘tools of the trade’ and ask a question - what features do we work with?
Macros have the potential of being extremely powerful and flexible. Macros can also shorten the
programming time by many hours, literally. Yet, in spite of their great possibilities, macros are
often the ‘forgotten gems’ available for CNC programming. Many companies do have macro ca-
pabilities, but avoiding them, considering them too difficult and time consuming.

Macro tools include many functions, techniques and procedures. Custom macro cannot be clas-
sified as a true programming language, but macros do share many elements with languages such
as Visual Basic™, C++™, Lisp™, and many others, including the derivatives of the ‘early’ lan-
guages, such as Pascal. The most important tool for the start is to know the format of the macro,
and its contents. When these two features are considered together, in the proper sequential order,
we are talking about the macro structure.

Basic Tools

Every CNC programming technique that a typical part programmer has already learned can be -
and are - used in macros and macro development. An in-depth knowledge of CNC programming,
combined with a good practical experience (even machining helps), is an essential requirement to
learning macros and learning them right from the beginning. Many programming aids not found
in standard CNC programming are also available in macros, but they enhance and extend the
traditional programming methods - they do not replace them.

There are three basic areas to understand for successful macro development:

& Variables ... three types of data
& Functions and Constants ... mathematical calculations
¢ Logical Functions ... loops and branches

These three feature areas offer many powerful special functions that are used within the body of
a macro, which is very similar to a body of a subprogram, except standard subprograms cannot
use variable data, whereby macros can (and do so very extensively).

Just like a subprogram, a macro by itself is not much of a use - it has to be interwoven (inter-
faced) with another program, called from another program, by a previously assigned program
number. The address (letter) O is used to store the macro programs, the address (letter) P is used
to call it, applying the same logic as for subprograms.

73

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

74 Chapter 6

Variables

Variables are the most noticeable feature in macros. They are the heart and soul of all macros.
Variables give macros the necessary flexibility, by being what they are - storage units for data
that constantly changes - the so called variable data. The name ‘variable’ is suggestive enough -
variables are storage areas in the control system that can hold a certain supplied value. When a
value is assigned to a variable, it is stored there for future use. Stored values are called the defined
values, or defined variables.

In macros, variables can be used instead of real values and they can be acted upon, for example,
by adding two variables together, to get yet another value. The possibilities are enormous and
greatly depend on the skill of the part programmer - or the macro programmer.

Functions and Constants

There is a significant number of functions available for macros. Functions are program features
that calculate something - they solve a mathematical calculation or a formula. For example, a +
(plus) function will sum two or more values together. The SQRT function will calculate the square
root of a given number. Many other functions are available, for arithmetic, algebraic, trigonomet-
ric, and many other calculations.

In addition to functions, constants can be defined in a macro as well, for example the 7 constant
with the value of 3.14159265359....

Logical Functions

Logical functions - also known as logical operators - are used in a macro program for looping
and branching purposes, sometimes called a divergence. Looping and branching means a change
in the program flow that is based on - and dependent on - a certain condition that has been previ-
ously defined.

We are quite familiar with the concept of logical operators in everyday life, we just don’t call
them that. In English language, there is a short word 'if’. We use it very frequently to present a
certain statement based on a conditional situation. For example, we may say, “If I have time, I will
visit you”. That statement means that I can only visit you, if I have time, otherwise, it will not be
possible, and I cannot visit you at all. These outcomes are conditional. The 'if’ word implies a
choice based on the result of a certain condition.

In macros, there are two functions that are used with a given condition. The given condition
may be checked (some programmers may say ‘tested’ or ‘evaluated’) on several grounds, using
the comparison operators, such as 'greater than', 'equal to', 'less than or equal to', and several
others, used together with the 'if" function. These operators are called the Boolean operators,
named after their inventor George Boole (1815-1864), an English mathematician. They are also
called the logical operators. The given condition can be evaluated (tested) only once, using the 'if’
check. It may also be evaluated many times, progressively, using a loop function 'while' the given
condition is true - which means 'as long as' the condition is true). The result of the evaluation will
determine further flow of the program.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACRO STRUCTURE 75

Defining and Calling Macros

In essence, a macro is a much more sophisticated subprogram. From that viewpoint, it is fair to
make a comparison between a regular subprogram and a typical macro. There are always at least
two individual programs involved in this type of programming environment - the main program
and the subprogram. This is also true for macros - there is the main program and the macro pro-
gram. In both cases, the main program calls the subprogram or the macro, by its number, which
makes the subprogram or the macro program subservient to the higher level program that calls it.
Just like a subprogram, a macro can be called not only by the main program (the program at the
top), but also by any other subprogram or macro as well, up to a four-level depth. As expected,
certain structures must be observed. In all cases, the subprogram or the macro contains specially
selected repetitive data, such a contouring toolpath or a specific hole pattern, and in all cases these
data are stored as separate programs, under their own unique program numbers.

The single major difference between a subprogram and a macro is the flexibility of the input
data. Subprograms always use fixed data, these are values that cannot change. Macros use flexible
data, using variable values, that can be changed (defined or redefined) very quickly. Of course,
macros may use fixed data as well, but that is not their main purpose.

Macro Definition

Structurally, defining a macro is a very similar to defining a subprogram. In both cases, the pro-
gram is assigned a program number. In its body, the repetitive data are stored and accessible un-
der that number from the control system memory. In this respect, all rules of a subprogram
definition have to be followed in a macro definition.

What is different in the macro program development, are the variable definitions, functions and
logical conditions. Variable definitions use variables to store various data. Variables are tempo-
rary storage areas of the control system memory - in the macro body they are defined with a spe-
cial symbol - the # sign. Even at their simplest level, macros will use variables, therefore they
will use the # symbol. The upcoming chapters offer a lot more information and details.

Variables are the single most important key to macro programming

Macro Call

Visually, the major difference between calling a subprogram and calling a macro is defined by
the programming format. Logically, both calls are the same and serve the same general purpose.
In both cases, a previously stored program (a subprogram or a macro) is retrieved from the con-
trol storage area by a specific program code:

M98 P---- | Calls a subprogram P---- (additional data are not normally required)

G65 P---- | Calls a macro P---- (additional data are normally required)

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

76 Chapter 6

Fanuc control system provides a G-code (preparatory command) to call a previously defined
macro rather than a miscellaneous function M used for subprograms. This command is G65, and
represents the call of a macro program by its stored number, supplemented by additional data.
The following structure examples illustrate the differences:

& Example 1 - Main program and a SUBPROGRAM :

00004 (MAIN PROGRAM)

N1 G21 Startup block

N2 ..

N15 M98 P8001 Call stored subprogram 08001
N16 ..

N52 M30 End of main program

%

08001 (SUBPROGRAM)
N1 ..
N2 ..

N14 M99 End of subprogram
%

& Example 2 - Main program and a MACRO :

00005 (MAIN PROGRAM)

N1l G21 Startup block

N2 ..

N15 G65 P8002 F150.0 Macro call of 08002 with the F argument (= variable #9)
N16 ..

N52 M30 End of main program

%

08002 (MACRO)

N1 ..

N2 ..

N8 GO1 X150.0 Y200.0 F#9 Variable #9 applied to feedrate
N14 M99 End of macro program

%

The two examples are included only to show the differences in structure. Note, that the macro
example contains two new types of data, data that has no equivalent in a subprogram - one called
variables, the other called arguments.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACRO STRUCTURE 77

Arguments

The data defined with the macro call, that is with the G65 P- command, are called arguments.
Arguments contain the actual program values required for a particular macro application only.
They are always passed to the macro itself. Variable data in the macro are replaced with the sup-
plied arguments and the toolpath or other activity is based on the current definitions (arguments)
passed to the macro.

A typical program sample of a G65 macro using three arguments will have the following
schematic format:

G65 P- L- <ARGUMENTS>

1" where...
G65 Macro call command
P- Program number containing the macro (stored as 0----)
L- Number of macro repetitions (L7 is assumed as a default)

ARGUMENTS Definition of local variables to be passed to the macro

An actual sample program macro call may be defined as:

G65 P8003 H6 A30.0 F150.0

1" where ...
G65 Macro call command
P1234 Program number containing the macro (stored as 08003)
H6 Assignment of local variable H (#11) argument to be passed to the macro 08003
A30.0 Assignment of local variable A (#1) argument to be passed to the macro 08003
F150.0 Assignment of local variable F (#9) argument to be passed to the macro 08003

Assignments of variables is a separate subject covered in a separate chapter. An assignment sim-
ply means giving the variable a value required at the time of call. From the example, it is evident
that custom macro call G65 is only similar to, but definitely not the same as, the subprogram call
M98. When two different calls (M98 and G65) of a previously stored repetitive program are com-
pared, there are several very important differences:

¢ In the G65 command, argument is passed to the macro in the form of variable
data. In M98 only the subprogram can be called. No data passing is possible

¢ In a subprogram call M98, the block may include another data (i.e., a motion to a
tool location). In this case, the processing can be stopped in a single block
mode. This is not possible in the G65 mode

¢ In a subprogram call M98, the block may include another data (i.e., a motion to a
tool location). In this case, the processing of the macro starts only after the
‘other data’ is completed. The G65 command calls a macro unconditionally

¢ Local variables are not changed with M98 but they are changed with G65

A ETGieer NOBob ks Pefie

78

FANUC CNC Custom Macros

Chapter 6

Visual Representation

Figure 16 shows a schematic representation of a macro definition and a macro call. Note that
the general structure is identical with the one shown earlier (Figure 4) - a single level subprogram
nesting structure.

START Figure 16
i Macro definition and
00001 08001 macro call
(MAIN) (MACRO)
Basic structure
GO0 X#1 Y#2

G65 P8001 A120.0 B80.0 |———

M30 v
% L M99
v
%
END

In the main CNC program, the macro call command G65 P8001 retrieves previously stored
macro 08001 and passes two arguments to the macro - argument A and argument B. Argument A
passes the current value of 120.0 to the macro O8001, argument B passes the current value of
80.0 to the same macro.

Arguments A and B have fixed variable numbers assigned to them (see Chapter 8 for details).
By definition, variable #1 is assigned to argument A, variable #2 is assigned to argument B.
When either variable is called in the macro body, it will be replaced by the value assigned in that
argument. In the case illustrated, the macro block GO0 X#1 Y#2 will be interpreted as GOO
X120.0 Y80.0. In this case, the arguments represent tool motion as a location or distance, but
could have hundreds of other meanings. The 'secret' of macros is that while the arguments in the
macro call will change from job to job, the macro remains the same. For example, if the argument
is changed to G65 P8001 A200.0 B150. 0, the rapid motion block in the macro will be inter-
preted as GOO X200.0 Y150.0.

This short illustration does not explain all details, but should serve as the first step to full and
complete understanding of macro concepts and their development.

In regards to the macro definition, one may ask where the program number O8001 came from.
Is it a mandatory number? Why this number and not other? These, and many questions need some
explanation, which is provided in the next section. It is important to keep in mind that all CNC
programs (subprograms and macros included) may use any number within the provided range
(00001 to 09999 or O00001 to 099999). So the first question can be answered negatively. No,
this number is not mandatory. To answer the second question additional knowledge is required. In
short, Fanuc controls provide a selected range of program numbers that can have important attrib-
utes attached to them, for example, whether they can be edited or deleted. Selecting macro pro-
gram number O8001 selects a program number that belong to such a range.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACRO STRUCTURE 79

Macro Program Numbers

Although any 1 to 4 digit number within a range of O0001 to 09999 can be assigned as a macro
program number, certain ranges can be manipulated to provide useful benefits. By definition,
Fanuc programs can be separated into the following program number groups:

Program Number Range Description

00001 to 07999 Standard program numbers (typically for the main programs)

Macro program number Group 1

08000 o 08999 Can be locked by a setting

Macro program numbers for special applications
09000 to 09049 Can be locked by a parameter
(used with G, M, S, and T functions)

Macro program number Group 2

09000 to 09999 Can be locked by a parameter

There are several good reasons why macros deserve special consideration and order when
macro program system is considered. By selecting a macro program number from within a partic-
ular range, certain benefits become evident, as shown in the table and explained in more detail.

Macro Program Protection

The majority of standard CNC programs do not need protection of any kind. When the word
protection is applied to these programs, it means one or both of the following attributes can be as-
sociated with the program number:

1 Visibility of the program on the control screen (program directory display)
1 Editing of the program contents (also including program deletion)

Macro programs need protection more than subprograms, and subprograms need more protec-
tion than the standard programs. When planning a macro program, it is important to understand
the difference between the program number selection, particularly in the available range of O8000
to 09999.

Setting Definitions

In order to select any level of protection, the actual setting of an appropriate parameter must be
known and controlled. Since all settings relating to protection of programs are of the bif type, they
can only have a set value of 0 or 1. In this respect, some users may experience difficulty in the ac-
tual interpretation as provided in a Fanuc Parameter Manual.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

Chapter 6

Parameter settings of the bit type always define one of two possible states - never more and
never less. When we apply these states to the editing and displaying program numbers, only two
possibilities exist for each settings:

(d Program editing is ALLOWED .. Or ...
(d Program editing is NOT ALLOWED

(J Program display during execution is ALLOWED c.or...
(1 Program display during execution is NOT ALLOWED

In their manuals, Fanuc used expressions such as permitted, prohibited, performed, inhibited,
protected, all along with their opposites. There is nothing wrong with these expressions, except
when used at random, they hardly provide convenience, easy interpretation or consistency - and
they fail to provide user's confidence. The description of each program number range that follows
will use consistent and easy to understand expressions.

Program Numbers - Range 00001 to 07999

Standard programs (even subprograms) can be stored in the control system under any legitimate
program number, within the program number range of O0001 to 07999. These programs can be
displayed and viewed at will, they can be registered into the system memory without restrictions,
and they can be edited at will at any time, also without any restrictions.

If using macros, restrict standard program numbers within the range of 00001 to 07999

Program Numbers - Range 08000 to 08999

Two groups of program numbers are restricted by a parameter setting. The first group (Group
1) is in the range of program numbers O8000 to 08999. It covers programs within the range of
08000 to 08999 only. Programs using numbers from Group 1 cannot be edited, registered, or de-
leted, without a parameter setting. The parameter access number depends on the control system:

Parameters related to EDITING - 08000-08999 program range

Control System | Parameter | Bit | Bit ID Setting

0 = Program editing is ALLOWED

Fanuc 0 #0389 #2 | PRG8
1 = Program editing is NOT ALLOWED

0 = Program editing is ALLOWED

Fanuc 10/11/15 #0011 #0 | NES8
1 = Program editing is NOT ALLOWED

0 = Program editing and display is ALLOWED*

Fanuc 16/18/21 #3202 #0 | NE8
1 = Program editing and display is NOT ALLOWED*

A ETGieer NOBob ks Pefie

MACRO STRUCTURE

FANUC CNC Custom Macros

81

Parameters related to DISPLAY - 08000-08999 program range

Control System | Parameter | Bit | BitID Setting
Fanuc 0 nla nfa | nla 0=nla 1=nla (not available)
0 = Program display during execution is ALLOWED
Fanuc 10/11/15 #0011 #1 | ND8
1 = Program display during execution is NOT ALLOWED
0 = Program editing and display is ALLOWED*
Fanuc 16/18/21 #3202 #0 | NE8
1 = Program editing and display is NOT ALLOWED*

Program Numbers - Range 09000 to 09999

The second group is named Group 2. It covers the range of program numbers 09000 to 09999
only. Programs using numbers from Group 2 cannot be edited, registered, or deleted, without a
parameter setting. Again, the parameter access number depends on the control system:

Parameters related to EDITING - 09000-09999 program range

Control System | Parameter | Bit | BitID Setting
0 = Program editing is ALLOWED
Fanuc 0 #0010 #4 | PRGY
1 = Program editing is NOT ALLOWED
0 = Program editing is ALLOWED
Fanuc 10/11/15 #2201 #0 | NE9
1 = Program editing is NOT ALLOWED
0 = Program editing and display is ALLOWED**
Fanuc 16/18/21 #3202 #4 | NE9
1 = Program editing and display is NOT ALLOWED**
Parameters related to DISPLAY - 09000-09999 program range
Control System | Parameter | Bit | Bit ID Setting
Fanuc 0 nla nla| nla | 0=nla 1=nla (not available)
0 = Program display during execution is ALLOWED
Fanuc 10/11/15 #2201 #1 | ND9
1 = Program display during execution is NOT ALLOWED
0 = Program editing and display is ALLOWED**
Fanuc 16/18/21 #3202 #4 | NE9

1 = Program editing and display is NOT ALLOWED**

NOTE: Display = Display during execution, * and ** identify the same settings for editing and display

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

82 Chapter 6

Program Numbers - Range 09000 to 09049

Within the Group 2 is a small subgroup, identifying a small selection of program numbers be-
tween 09000 and 0O9049. This range is used for special type of macros - those that are designed to
define a new G-code, M-code, S-code or T-code.

As a subject, the creation of new G-codes, M-codes, S-codes or T-codes, is rather advanced at
this point, and even a seasoned macro programmer does not always need these advanced program-
ming methods. However, it is very important to establish a certain method in assigning macro
program numbers right from the beginning, even if it is for cataloguing purposes only.

It is always a good practice to assign all macros the 8000 or even the 9000 series of numbers, so
they can be locked and protected against accidental editing and deletion.

Difference Between the 08000 and 09000 Program Numbers

Looking at the definitions of program numbers carefully, it is easy to notice that both Group 1
and Group 2 have the same restrictions. In either group, programs using numbers from that par-
ticular group cannot be edited, registered, or deleted, without a parameter setting. So what are the
unique differences between them?

The most significant difference is in the method of how the restrictions are activated - which pa-
rameters are used. Fanuc system 15 is a higher level control then Fanuc 16/18/21 or Fanuc 0. In
most cases, the difference between the various systems is the flexibility and convenience of the pa-
rameter settings, rather than particular features or functionality.

Often, the main difference in the ease of setting. Fanuc distinguishes two ways of setting a sys-
tem parameter (not applicable to all controls). One is through the SETTING key on the operation
panel. This is also called Handy Setting, or Setting (Handy) or something similar. In order to acti-
vate a system parameter in this environment, the programmer will normally use the ON (1) or
OFF (0) setting. This is available only on Fanuc 15 and 16/18/21 models. On Fanuc 15, parame-
ter #8000, bit #0 (PWE), allows changes to parameters that cannot be set through the Setting
screen. On Fanuc 16/18/21, the Setting screen allows all parameters to be changed. When param-
eters are enabled (on any control), an alarm (error condition) occurs naturally.

Understanding the machine specifications and control system parameters is extremely important
in macro development. Even in its detailed approach, this handbook only offers some insights and
explanations, the most important and common ones - it cannot cover all details for all occasions.

No macro programmer can work without the various machine and control manuals - they are
the sources of concrete information and precise data source about the equipment used. Each CNC
machine tool in the shop will have to be evaluated individually.

For specific details, always consult machine and control manuals supplied by the vendor

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

4 CONCEPT OF VARIABLES

In the previous chapter, several concepts of macro structure were covered and the purpose of
variables has been introduced and identified, including their basic usage in macros. Variables in a
custom macro have been designed with several considerations, so looking at them in more detail is
essential to their full understanding.

The starting point - and the most important one - to understanding variables, is the understand-
ing of their differences. In Fanuc custom macros, there are four different categories of variables,
called the variable types.

Types of Macro Variables

All Fanuc control systems, regardless of their model number, support macro variables by type.
They are classified into four types of variables:

Variable)
number range | Variable Description
type
From To
A NULL variable has no value. It is defined as #0 variable,
#0 NULL it is an empty variable, often called a vacant variable. This
variable variable can be read by the macro program, but it cannot be
assigned a value, which means data cannot be assigned to it
LOCAL variables are only temporary - they are used in
a macro body and hold certain data. When the macro is called,
LOCAL the local variables are set to their assigned values. When the
#1 #33 . . . : .
variables user macro is completed and exits (using the miscellaneous
function M99), or the control power is turned off, all local
variables are set to null values - they cease to exist
COMMON COMMON (also called Global) variables are still valid when
#100 | #149 or a macro is completed. These variables are maintained by the
system and they can be shared by several other macro programs.
#500 | #531 Gl.obal The higher level variables are normally cleared by a specially
variables design macro program
SYSTEM variables are used for setting and/or changing default
#1000 ..and | SYSTEM conditions and can read and write different CNC data, for
up variables example, a current status of a G-code mode, the current work
offset, etc. Their numbers are assigned by the Fanuc control

83

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

84 Chapter 7

Note that some reference manuals may only refer to the last three types, leaving the ‘vacant’
variable (numbered as #0) alone - not considering it as a separate group type.

In a summary, variables are used in macros instead of actual data. The macro programmer as-
signs values to the variables on the basis of the current application. Variables add flexibility to the
macro program but also benefit from other features, such as input data integrity, allowable range
checking, etc.

Variables in Macros

Variables are the most noticeable feature of custom macros, either in their initial assignment, or
in their use within the macro body. Custom macros depend on variables, so it is imperative to
have a look at what variables are, from the ground up.

Definition of Variables

The word or expression ‘variable’ can be defined in mathematical terms:

A variable is a mathematical quantity that can assume
any value within its allowed range and format

Calculator Analogy

The concept of variables can be illustrated with a common scientific pocket calculator. Even the
most inexpensive calculators have at least one memory feature. This memory is a temporary stor-
age area for data values that can be stored now and used later. The data values in the storage will
most likely be different every time the calculator is used for the same calculation, so such data is
called the variable data, the storage area is the variable (calculators call it memory storage or just
memory). The word variable means change or changeable. More advanced calculators have more
than one memory storage area and they also offer storage of formulas and common calculations. If
more than one memory is available on a calculator, identification numbers or letters for each
memory are provided on the keypad, to distinguish one from another. Recalling the previously
stored variable value by a letter or a number will retrieve it from memory and place it into the cur-
rent calculation. In macros, many memories (variables) containing different data can be defined
and available for calculations, depending on the control model.

Variable Data

In macros, the concept is the same as for calculators. Variables have a generic, rather than a
specific, character. They serve as storage areas, and they contain values that can - and do - change
with each macro use. For example, in standard programming, a macro may be used for repeating
the same toolpath for different materials of the part. Although the toolpath itself may not change,
the spindle speeds and the feedrates will be different for each material. For three materials, for ex-
ample, three individual and separate programs with many repetitions would have to be written.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

CONCEPT OF VARIABLES 85

Quite likely, the only difference between the three programs will be the S-address for spindle
speed in rev/min and the F-address for feedrate value in mm/min (in/min). With a macro, both ad-
dresses S and F can be defined as variables (because they will change for each of the three materi-
als), then supply the suitable speed and feedrate values for different materials, as needed. By
changing only those two values, the program can be used for many more different materials, not
just three. The main programming benefit is that the body of the macro program does not change
at all, once it is verified.

Variable Declaration

Before they can be used, variables have to be defined - macro expression refers to this activity
as declaration of variables - variables have to be declared. Just like the data entry into the memory
of a calculator, the basic rules governing the declaration of variables is that a variable must be de-
fined first, and only then it can be used in a program or a macro. In the program that uses the vari-
able, the form of definition is represented by the # symbol (commonly called the pound sign or the
sharp sign or the number sign). This number sign will be used in all macros. The definition of a
variable can take several forms, the first of them is the variable value:

#i = assigned current value

I ... where the letter 'I' represents the variable number - for example:

#19 = 1200 Value of 1200 is assigned to variable number 19
it can be spindle speed (rev/min)

#9 = 150.0 Value of 150.0 is assigned to variable number 9
it can be feedrate (mm/min, m/min, ft/min, in/min, etc.)

These two macro statements store values - the value of 1200 is stored into the variable #19 and
the value of 150.0 into the variable #9. Both values shown in the example are numbers, but they
are two different fypes of a number.

Real Numbers and Integers

There are two basic types of numerical values used in macros - a number can be either:
¢ REAL number ... real number always requires a decimal point

¢ INTEGER number ... integer numbers cannot use decimal point

When performing mathematical calculations, the fype of every numerical value is important. In
simple terms, real numbers are typically used for calculations, whereby integer numbers are used
for counting and other applications that do not require a decimal point. When a variable number is
used in the macro program, its value can be changed as required at any time, two or more vari-
ables may be used for mathematical calculations, etc.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

86 Chapter 7

Variable as an Expression

Variables can also be defined by using an expression, where the expression is typically a mathe-
matical formula or a general calculation. The simplest expression is normally a direct value as-
signment within the macro body, for example:

#9 = 250.0

Variable #9 in the example contains an assigned value of 250.0 mm. This actual value may be
used to replace a variable value in the macro, for example, the cutting feedrate:

GO01 X375.0 F#9

The F#9 macro statement will be interpreted as F250.0 (mm/min) actual statement. Redefini-
tion of the variable, for example #9=300.0, will pass on the new definition to the macro body, so
GO1 X375.0 F#9 will mean GO1 X375.0 F300.0.

Variables may also use complex expressions, for example:

#i = #3 + 50, where #7 is a previously defined variable, which should be interpreted as -
add the value of 50 to the current value of variable contained in #3j, and store the new result in
variable #i .

The variable definition #9 = 150. 0 in one part of the program, can be used again later, usu-
ally as a substituted statement, for example, as a definition #9 = #9 * 1.1 in another part of the
macro program, such as a feedrate input F#9, with the actual meaning of F165.0.

In all applications, the rule for applying the variables is simple (the current example is used):
I Take the stored value of variable #9 and use it as the current value of the programmed feedrate

When expressions are used in a macro, they always evaluate a multiple mathematical or logical
operation. Expressions must be enclosed in square brackets [expression]:

#i = #i * [#] + #k]

1> ... where the brackets force calculation of #j+ #k to be performed first, before being multiplied by #i

Any complex calculations can be nested within square brackets, always following the standard
mathematical hierarchy relating to the order in which calculations will be processed.

Usage of Variables

Macro variables can only be used in a program if they are defined first. Once a variable is de-
fined, it can be used by preceding it with the desired Fanuc program related address (character),
which is a capital letter of the alphabet, such as F, S, G, M, etc.

For example, the two variables defined earlier can be used in the body of a program:

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

CONCEPT OF VARIABLES 87

& \Variables declared (defined) :

#19 = 1200 Spindle speed defined
#9 = 150.0 Cutting feedrate

Variables must be declared (defined) before they can be used, as the example shows.

& \Variables applied (used) :

GO0 G90 G54 X350.0 Y178.34 S#19 MO3 (VARIABLE SPINDLE SPEED)

G43 Z25.0 HO3 MO8
GOl Z-15.0 F200.0 (FIXED FEEDRATE)
X425.0 F#9 (VARIABLE FEEDRATE)

Note the use of a fixed and variable feedrates in the same program. Also note that no macros
have been used at all. Many programmers do not realize that they may use variables in the main
program (standard program) only, without a macro, providing the macro option is supported by
the control system. A complete example of such an application has already been shown earlier, in
Chapter 1 - Figure 1, and still another example is also included in the next chapter.

Decimal Point Usage

A variable that is defined in the macro program body must always be entered with the decimal
point for all dimensional values, such as position locations, distances, feedrates, or any other defi-
nitions that use metric or English units (see next section). If these values are entered without the
decimal point, the interpretation by the control will use the default settings and could cause some
very serious problems. For example,

#11 = 45

may be interpreted in numerous ways, and not all will yield the same result. The stored value of
45 may become 45.0, 0.045, 0.0045 - or remain just as declared - 45.

In programming, never count on default values !

If an input value accepts the decimal point, always declare it with the decimal point included. In
daily applications, typical values that require decimal point are all values relating to dimensions -
they are also called dimensional words or dimensional values. It is important to keep in mind that
the default values may work for you, but against you as well. For example, if the X-axis coordi-
nate location is defined as X20, for example, in metric system it will be interpreted as X0.020, in
the English units system as X0.0020. A significant difference!

There is also a function ADP (Add Decimal Point) available and described elsewhere, but not
recommended even by Fanuc as the best solution to solve decimal point woes.

A ETGieer NOBob ks Pefie

88

FANUC CNC Custom Macros

Chapter 7

Metric and English Units

For all dimensional words used in a CNC program (suchas X, Y, Z, I, J, K, R, F, etc.), the de-
clared variables may be referenced with the appropriate dimensional word, for example:

#1 = 11.6348 Variable is declared or defined
GO0 X#1 Variable is used

If the selected units in the program are English units (programmed in the G20 mode), the mo-
tion block GO0 X#1 will be interpreted as GOO X11.6348. If the programming units are metric
(programmed in the G21 mode), the GOO X#1 will be interpreted as GO0 X11.635. This is a
very important difference. A variable that is called in the macro will be automatically rounded to
the least increment (smallest unit) of the program address.

Least Increment

All CNC programs can use values within an allowed range - up to a certain maximum, and
down to a certain minimum. Maximum values are seldom an issue, but every programmer should
understand the minimum values. They are often called the minimum increment or the least incre-
ment. These fancy expressions can be translated to a much more practical statement - the smallest
amount of motion the machine can provide. Regardless of how they are called, they are distin-
guished by the number of decimal places:

Units system Number of decimal places Least increment
Metric G21 3 XXXXX.XXX 0.001 mm
English G20 4 XXXX.XXXX 0.0001 inch

Bear in mind that as a rule, many Fanuc controls do not convert from one unit of measurement
to another, only shift the decimal point. Some features in the control may be converted, but never
count on such conversion in any program development. If the decimal point is only shifted during
units change, an English dimension of 12.3456 will become 123.456 in metric units - definitely
not correct. Providing the G20 or G21 units selection command into the program is always highly
recommended. What is definitely never recommended is to use both types of units in one pro-
gram, that is between the start of main program and the M30 function for program end.

ALWAYS - provide units selection in every program

NEVER - use both available units in any one program

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

CONCEPT OF VARIABLES 89

Positive and Negative Variables

A variable definition that is not equal to zero is called a non-zero variable. Non-zero variables
may be expressed as either positive or negative variable values. For example,

#24 = 13.7 ... this is a positive value variable definition
#25 = -5.2 ... this is a negative value variable definition

Why is this very simple and common fact so important? The reason is that in a macro, the call
of the variable may also be positive or negative, which means tow signs are in effect. When the
variable is referenced in the macro, the sign can be intentionally reversed, in order to achieve the
opposite effect of the definition, for example:

GO0 X-#24 ... will be equivalent to GO0 X-13.7
GO0 Y-#25 ... will be equivalent to GO0 Y¥5.2
GO0 X#24 ... Will be equivalent to GO0 X13.7
GO0 Y#25 ... will be equivalent to GO0 Y-5.2

The sign in the declaration is always used together with the sign in the actual execution - the
same declaration used as above. Look at one of the above examples:

GO0 Y-#25 ... Will be equivalent to GO0 Y¥5.2

The reason is strictly mathematical and relates to the use of a double sign in a calculation. In
many instances, a negative number will have to be added or subtracted, and so on.

The following examples show all four possibilities:

Calculation Result Format Example
Positive + Positive Positive a+ (+b) =a +b | 3 + (+5) =3 + 5 =38
Positive + Negative Negative a+ (-b) =a-b 3+ (-5) =3-5=-2
Negative - Positive Negative a- (+b) = a - b 3 - (+5) =3 -5=-2
Negative - Negative Positive a-(-b)=a+b |3 - (5 =3+5=28
This simplified method may be even easier to understand:
+ + =+ + - = - -+ = - - - =+

Note that the actual order of the plus and minus symbols within a calculation, such as +- or -+
makes no difference to the result. However, the standard mathematical hierarchy of calculating
order is and must always be maintained.

A ETGieer NOBob ks Pefie

90

FANUC CNC Custom Macros

Chapter 7

Syntax Errors

Making errors in any manually developed program is not uncommon, even if it is undesirable.
Macro programs are not immune to being written wrong, even by experienced programmers. At
the same time, once a macro is verified and fully functioning, there will be no more errors.

In CNC programming, there are two categories of errors:
& Syntax errors ... control system will warn the user (alarm issued)

¢ Logical errors ... control system will not warn the user (alarm not issued)

It is important to eliminate both categories, but it is much harder to eliminate the logical errors
than the syntax errors. Briefly, syntax errors are errors that are in conflict with the designed for-
mat the control system expects. Logical errors are those, where the programmer intended one ac-
tivity and provided another activity. For example, -X100.0 is a syntax error, because a program
word must always begin with a letter - corrected version is X-100.0. An example of a logical error
is when the programmer intends to move to Y-position of 750 mm, but programs Y75.0, instead
of the correct input of X750.0.

The section on restrictions is really a section that covers some syntax errors but also includes
statements and preferences as to what is allowed and what is not, what is legitimate entry and what
is not - with explanations.

Restrictions

Programming in any language has to adhere to a number of very strict rules and restrictions im-
posed by the language developers for many good reasons. Programmers must follow the rules,
conditions and restrictions that apply to the language used. Although not strictly a language,
Fanuc macros are no different in this respect. Incorrect use of the macro tools can cause a system
error (alarm) - it can also cause an unwanted result, even dangerous situations.

The following conditions and restrictions apply to all Fanuc custom macros, with some typical
examples shown for each item - the first column specifies the statement, error or restriction, the
second column provides condition or example:

Colon character : Colon character is not allowed

Semicolon character ; Semicolon character is not allowed

Zero value is neutral
(neither positive nor negative)

+0 or -0 cannot be identified

Leading zeros are ignored #1 = 003 isthesameas #1 = 3

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

CONCEPT OF VARIABLES

91

Program number as an EIA identification
address O cannot be used with a variable

O#1 is not allowed

Program number as an ISO identification
address : cannot be used with a variable

: #1 is not allowed

Block number identification address N
cannot be used with a variable

N#1 is not allowed

Block skip identification address /
(slash symbol) cannot be used with a variable

/#1 is not allowed

Maximum value of an address
cannot be exceeded

If
#1=1000
then G#1 is not allowed

Brackets for a single variable
will be ignored

#[7] isthesameas #7

One variable cannot replace another
variable directly - example 1 - incorrect

#7 is not allowed

One variable cannot replace another
variable directly - example 2 - incorrect

##7 is not allowed

One variable cannot replace another
variable directly - example 3 - correct

#[#7]1 is allowed

Overflow or underflow situation
when 0 and 90 degrees are used in
trigonometric calculation

SINI[O] = negative underflow
COS[90] = positive underflow
TAN[O] = negative underflow
TAN[90] = positive overflow

Nesting in calculations is allowed

If variables #7 and #9 have been previously
defined, the following nesting is correct:
#101=FIX[[#9*1000]/[3.1416*#7]]

More examples could be added, but the listing covers the most common considerations.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

92 Chapter 7

Custom Machine Features

One of the most common reasons for a CNC machine tool having the macro features available is
- the machine tool builder. Machine manufacturers often incorporate many unique features into
their machine tools, for example, advanced physical equipment, such as broken cutter detectors,
gantry lines, programmable guard controls, etc. These 'hardware' features must be controlled by
the 'software'. The software in such cases programmed in a PLC (Programmable Logic Control)
but is frequently supplemented by a special macro, usually built into the control at the time of pur-
chase. This macro may or may not be hidden from display, most likely will be protected, but it is
always very important to be aware of its existence.

Restrictions and minimum or maximum values specified by the machine tool builder must al-
ways be honored in macro development or modifications. Programmers should always know the
machine built-in ranges, for example, the work area, the minimum and maximum spindle speeds,
feedrate ranges, travel limits, tool sizes, and so on.

In their macros, machine tool builders also use special G-codes or special M-codes for their
equipment, and they will use many variables in the macros. In the next chapter, we look at vari-
ables in more depth.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

ASSIGNING VARIABLES

In the general introduction to variables earlier, four groups of variables were identified that are
used in macro programs:

¢ Local variables
¢ Common variables
¢ System variables

¢ Null variables (same as empty or vacant variables)

It is very important to understand these variables well, particularly their differences. This chap-
ter explains how to specify a value of a variable - how to assign a value to a variable. The first two
of the groups listed - the local variables and the common variables are covered by this topic.

Local Variables

Local variables transfer the user supplied data to the macro body. Up to 33 variables can be de-
fined as local. Naming this group of variables local means their stored values are only applicable
to the macro they have been defined in, they are not transferable between macros. In macro pro-
grams, each local variable is associated with an assigned letter of the English alphabet. There are
two options available for the so called assignment lists, Assignment List 1, which has 21 local vari-
ables available, and Assignment List 2, which has 33 local variables available. Both assignment
lists are described here in detail.

Defining Variables

Variables that are defined in the G65 macro call, can be within the range of #1 to #33. They
are called the local variables, or arguments. They are available only to the macro that calls them
and processes them. Once the processing of the macro is completed, each local variable is reset to
a null value, which means it becomes empty and has no value - it becomes vacant.

In practical terms, the local variables are used to pass data definitions from the source program
(such as a main program) to a macro. Once transferred, they have served their purpose and are no
longer needed. These variables were local to the program that called them. We use local variables
to assign values to macro program arguments. Local variables are also used for a temporary stor-
age within the macro body, during calculations of formulas and other expressions.

In addition to the G65 command, there are also preparatory commands G66, G66.1, and G67,
all related to macros. The G65 command is most significant of them and is covered here in depth.

93

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

94 Chapter 8

Clearing Local Variables

Local variables are normally cleared (made vacant) by an intervention from the control panel
(usually done by the CNC operator), or a program code (usually done by the CNC programmer).
Each of the following actions will clear the local variables and sets them to null:

(d Pressing the control RESET key will set all local variables to null

Pressing the external RESET key will set all local variables to null

Pressing the EMERGENCY switch will set all local variables to null
Programming code M30 (program end) will set all local variables to null
Programming code M99 (subprogram end) will set all local variables to null

I W N

Any local variable can be cleared by these means, but it can also be cleared in a macro program,
if required. In the macro statement, it must be assigned the value of #0. Some manuals refer to the
process of clearing variables in a program as a process of purging variables, with the same mean-
ing. This example illustrates the clearing (purging) process of local variables in a program:

#1 = 135.0 Sets a value of variable #1 to 135.0
GO0 X#1 Uses variable #1 in the macro (X will be equal to X135.0)
#1 = #0 Sets #1 variable to #0 (null) - it holds no value - it is called

an empty or null or vacant variable - with the same meaning

A null variable is always identified as #0, never as a 0 only !

Assigning Local Variables

Fanuc offers two separate lists for the assignment of local variables. They are called the Assign-
ment List 1 and the Assignment List 2. In both lists, a letter of the English alphabet is arbitrarily
assigned a variable number, built into the control software. For example, in both assignment lists,
the letter A is associated with a local variable #1, letter B is associated with a local variable #2,
and the letter C is associated with a local variable #3.

The assignments vary greatly between the List 1 and the List 2, and the order of numbers does
not always follow the order of the letters as it may appear from A=#1, B=#2, C=#3 example.

Assignment List 1 - Method 1

The vast majority of macro applications use the variables from the Assignment List 1. It only
contains 21 assignments for local variables, but that is a number more than sufficient for the ma-
jority of macros. The 21 letters of the English alphabet are assigned local variables, as arguments,
defined in the G65 macro call, and passed to the macro body.

The Assignment List 1 is defined by Fanuc in the following table:

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

ASSIGNING VARIABLES

95

Argument List 1 Address

Local Variable in a Macro

A

#1

#2

#3

#7

#3

#9

B
C
D
E
F
H

#11

#4

#5

#6

#13

#7

#18

#19

#20

#21

#22

#23

#24

#25

N < X | S|<|clHd|u»w 8 O = X|«

#26

Assignment List 2 - Method 2

Only a very few macro applications use the Assignment List 2. It contains 33 assignments of lo-
cal variables, in case there is a need for more than the 21 local assignments from the Assignment
List 1. The first three assignments, A, B, and C are the same, but that is where the similarity ends.
These assignments are supplemented by a set of 10 argument groups, identified as I: J: Ki to Iio Jio

Kio. This method may be somewhat harder to implement, particularly by beginners.

A multiple definition with the same address is based on the specified order. Each I-J-K argu-
ment has a corresponding 1-2-3 suffix. The suffix of each set specifies the assignment order for

the argument set defined in G65 macro call.

A ETGieer NOBob ks Pefie

96

FANUC CNC Custom Macros

Chapter 8

Argument List 2 Address Local Variable in a Macro
A #1
B #2
c #3
I #4
i #5
K1 #6
Iz #7
J2 #8
K2 #9
Is #10
Js #11
Ks #12
la #13
Ja #14
Ks #15
Is #16
Js #7
Ks #18
le #19
Js #20
Ks #21
Iz #22
J7 #23
K7 #24
ls #25
Js #26
Ks #27
lo #28
Jo #29
Ko #30
ho #31
Juo #32
K1o #33

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

ASSIGNING VARIABLES 97

In the macro call G65, the assignment of an I-J-K set can be made without difficulty, but be
careful to follow the proper order:

G65 A10.0 B20.0 I30.0 J40.0 K50.0 I160.0 I70.0

I where...
A = #1 = 100
B = #2 = 200
I = #4 = 300
J = #b5 = 400
K = #6 = 500
I = #71 = 600
I = #10 = 1700

Since there are three I definitions (of which two I definitions are consecutive), the first 7 is I,
second / is Iz, and the third [is I3. Because the order of variable definition is the key, the ‘missing’
J and K have to be accounted for. Since they are not used, that means they have to be skipped, in-
cluding their number assignment. Use this method only if there is need for it.

Missing Addresses

In the much more commonly used Assignment List 1 (Method 1), there are only 21 letters avail-
able as arguments (definitions) to the G65 macro call. Although there 26 letters in the English al-
phabet, five of them are out of bounds - never to be used. See the next section for details on
variable addresses that are disallowed.

In reality, there are always 33 variables available, even when the Assignment List 1 is used.
This mysterious statement needs an explanation - where are the remaining 12 variables? Why are
they missing? Is there a connection between the missing numbers and the missing five letters?

In the Assignment List 1, there are only 21 variables (letter) that can be defined in the macro call
G65, but the remaining 12 can only be defined within the body of a macro. Look carefully on the
numbers of those variables missing in the Assignment List 1. The following numbers are only
those not available in the List 1:

Variables
#10, #12, #14, #15, #16, #27, #28, #29, #30, #31, #32, and #33

are not part of the Assignment List 1. Yet, they can be defined internally, within the macro body
only, also as local variables. They can be redefined and used again, but they are not tied up to a
letter address like the 'mormal' 21 variables.

A good example to illustrate the concept of using these variables in the macro body is variable
#33, although the example applies equally to other 'missing' variables. Since #33 is the last
available variable number, many macro programmers often use it as a counter definition for
macro loops (any other variable can be used for the same purpose with the same result). A counter
for loops is often required within the macro body, but there is no need to define it in the G65
macro call statement, where it would have be defined by one of the assignable 21 variables.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

98 Chapter 8

Disallowed Addresses

The next 'mystery' to solve is the mystery of the five missing letters - addresses. Why there are
only 21 of the 26 English alphabet letters that can be used? The five remaining letters are missing
for a good reason. Just by looking at the missing numbers in the Assignment List I may provide a
clue. These numbers are missing in the Assignment List 1:

#10, #12, #14, #15, and #16
Note - these variables can only be used inside of macro, as already established.

Although #10 indicates a missing letter G, #14 a missing letter N, #15 a missing letter O, and
#16 a missing letter P, #12 is out of order. Try to think of the disallowed letters, not the num-
bers. The letters that cannot be used in a variable assignment (G65 block) are:

1 G address Preparatory command

L address Number of repetitions (for macros, subprograms, and fixed cycles)
N address Block number (sequence number)

O address Program number designation

I W W W

P address Program number call

These are restricted letters (try the word GNOPL to remember them) and cannot be assigned any
value for any purpose. Of the five, only the letter G can be used for a special purpose, such as a
definition of a new G-code. Custom G-codes can actually called a macro, for example, a specially
developed unique cycle. rather than using the G65 macro call, the new G-code type macro call
looks like a normal G-code, and is often easier to work with. Chapter 21 covers this subject.

Simple and Modal Macro Calls

The G65 command is defined as a macro call. That is correct, but it should really be defined as
a simple or single macro call. The word ‘simple’ in this case means ‘called once’, or ‘non-modal’.
In a program, G65 can only be used once at a time - as it is not a modal command. It may be
called anytime when needed, but all variables must be always redefined. This may prove impracti-
cal, when a macro should retain the arguments for more than a single call. To satisfy this need,
Fanuc does also offers a modal macro call command, in fact, it offers two of them:

G66 Macro is called with an axis movement command only

G66.1 Macro is called with any command (not available on all controls)

Like other modal commands, the modal macro call has to be canceled, when it is no longer re-
quired. The modal macro cancel command is another G-code:

G67 Modal macro call is canceled (G66 or G66.1)

The G66 is much more practical, therefore more often used, than the G66 . 1. Compare the typ-
ical formats for both, the G65 and the G66 commands, using the following example:

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

ASSIGNING VARIABLES 99
‘ 75 ‘ Figure 17
- Drawing example for a modal macro call
M X0YO0 is at the lower left corner,
X e i
0s T/‘//PU ©) - Z0is at the top of the 5mm plate
©
A o
©
o) i
Y
J 13 15 20 13
.

AL PLATE75x55x5

The simple example uses a part drawing in Figure 17, where four holes have to be tapped (drill-
ing operation is omitted in the example). The macro will be designed for a special tapping opera-
tion only and G84 tapping cycles cannot be used. This is also a good example of summing up the
subjects covered so far.

The main objective of the macro is to program a lower feedrate when the tap moves into the ma-
terial and a higher feedrate when the tap moves out. This tapping technique is useful for very fine
threads in soft materials, to prevent thread stripping. These are the programming objectives:

(1 Spindle speed 850 r/min

(J Nominal feedrate 425 mm/min (850 r/min x 0.5 pitch)

[Feedrate in 80% of the nominal feedrate cutting in

[J Feedrate out 120% of the nominal feedrate cutting out
[Retract clearance 3 mm

(1 Cutting depth 6.5 mm (1.5 mm below the bottom of part)

Selection of Variables

Any assignment address can be used in the G65 macro call, providing it meets the criteria of
macros. Since letters will be used as assignments, the macro programmer has 21 of these letters to
choose from. It makes sense to select letters that provide some relationship to their meaning in the
macro. From the list above, selecting argument F for feedrate, S for spindle speed, Z for tapping
depth, R for the initial and retract clearance, etc., makes it easier to fill in the assignments. This is
only a teaching macro that does not have all the 'bells and whistles' incorporated into it. In this
handbook, there are several version listed.

For the example at this stage (using modal macro call), only the following assignments will be
provided - the clearance R-value as 3 mm (#18), Z-depth as -6.5 (#26), and the feedrate as 425.0
(#9). Development of the macro 08004 is quite simple:

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

100 Chapter 8

08004

(SPECIAL TAPPING MACRO)

G90 GO0 Zz#18

GO1 Z-[ABS[#26]] F[#9*0.8] MO5 (FEED-IN AT 80 PERCENT OF FEEDRATE)
Z#18 F[#9*1.2] MO4 (FEED-OUT AT 120 PERCENT OF FEEDRATE)
MO05

MO03

M99

%

The macro call in the main program will use G65 first (tapping only):

N81 MO06

N82 TO07

N83 G90 GO0 G54 X13.0 Y11.0 S850 MO3 TOS8 (MOVE TO HOLE 1)
N84 G43 225.0 HO7 MO8 (INITIAL LEVEL)
N85 G65 P8004 R3.0 Z6.5 F425.0 (HOLE 1)

N86 G91 X15.0 Y10.0 (MOVE TO HOLE 2)
N87 G65 P8004 R3.0 Z6.5 F425.0 (HOLE 2)

N88 G91 X20.0 Y12.0 (MOVE TO HOLE 3)
N89 G65 P8004 R3.0 Z6.5 F425.0 (HOLE 3)

N90 G91 X13.0 Y10.0 (MOVE TO HOLE 4)
N91 G65 P8004 R3.0 Z6.5 F425.0 (HOLE 4)

N92 G90 GO0 Z25.0 M09 (END OF TAPPING)
N93 G28 225.0 MO05

N94 MO1

Note that the O8004 macro call had to be repeated with all the data definitions for each hole lo-
cation. Even a simple change to the given definitions would have to be made several times.

The CNC program above can be shortened - quite significantly - and made more flexible, with
the modal macro call G66, and only one call of the macro definitions. G67 command must be
used to cancel the modal call:

N81 M06

N82 TO7

N83 G90 GO0 G54 X13.0 Y11.0 S850 MO3 TO8 (MOVE TO HOLE 1)

N84 G43 225.0 HO7 MOS8 (INITIAL LEVEL)

N85 G66 P8004 R3.0 Z6.5 F425.0 (TAP HOLE 1 - MODAL)
N86 G91 X15.0 Y10.0 (MOVE AND TAP HOLE 2)
N87 G91 X20.0 Y12.0 (MOVE AND TAP HOLE 3)
N88 G91 X13.0 Y10.0 (MOVE AND TAP HOLE 4)
N89 G67 (CANCEL MACRO CALL)
N90 G90 GOO Z25.0 M09 (END OF TAPPING)

N91 G28 225.0 MO5

N21 MO1

Additional improvements (those not listed) will most likely include the cancellation of feedhold,
feedrate override and the single block mode, all for a more reliable execution of the program
blocks. All of them can be controlled by a macro, using system variables and other features, de-
scribed elsewhere in this handbook. Not all control models can accept the G66.1 command.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

ASSIGNING VARIABLES 101

Main Program and Local Variables

Any program that does not call subprograms or macros is called the main program - the only
program there is. Normally, we do not associate variables with a main program, only with macro
programs. Yet, there are many applications, where this programming technique can be very use-
ful and very simple to implement for all controls that have the macro option installed. For those
learning macros from the beginning, this may even be a very good way to start the training. The
best start is a practical example, enlarging on the basic concepts described in Chapter 7.

For the purposes of training, one of the simplest examples of variables in a main program is
peck drilling in different materials. Take two materials that are supposed to be the same, such as
forgings or castings from two different suppliers. Chances are, the materials will not only be
somewhat different in size and shape, they will most likely have a noticeably different hardness.
Although the drawing is the same for the finished part from either source, the machining proce-
dure is not. The forgings from one supplier will most likely use higher cutting speeds and feeds
than forgings from the other supplier, perhaps even different pecking depth. In basic program-
ming terms, we will need two programs to satisfy the given conditions.

The programming techniques for such a situation are illustrated in the sample program. A typi-
cal peck-drilling operation (deep hole drilling) is done on three holes. Drawing for the program is
not necessary, it is a very simple example, and only the peck drilling operation is listed:

00006
(PROGRAM FOR SOFTER MATERIAL)

(TO5 - 6.5 MM DRILL)

Né61 TO5

N62 MO6

N63 G90 GOO G54 X100.0 Y125.0 S1500 M03 TO6 (HOLE 1 LOCATION)
N64 G43 Z25.0 HO5 MO8

N65 G99 G83 R2.5 Z-75.0 Q15.0 F225.0 (HOLE 1 DRILLED)
N66 X125.0 (HOLE 2 DRILLED)
N67 Y150.0 (HOLE 3 DRILLED)

N68 G80 GO0 Zz25.0 M09
N69 G28 z25.0 MO5
N70 MO1

If the above example represents a good program for peck drilling of three holes in a material of
lower hardness (softer material), what program data do have to be changed to make the program
suitable for the higher hardness (harder material)?

Three items relating to actual machining data should be considered for a change in the program
and most likely necessary to be applied in the program:

(1 Spindle speed Softer material: 1500 r/min Harder material: 1100 r/min
(1 Cutting feedrate Softer material: 225 mm/min Harder material: 175 mm/min
(1 Depth of each peck Softer material: 15 mm Harder material: 12 mm

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

102 Chapter 8
A small table listing the same setting may be easier to read:
Material Spindle speed (S) Feedrate (F) Peck depth (Q)
Softer 1500 225.0 15.0
Harder 1100 175.0 12.0

Based on the machining decisions - and without a macro feature available - another program has
to be written, one that reflects the changes made, because of the material hardness. Here it is, with
the proper changes:

00007
(PROGRAM FOR HARDER MATERIAL)

(TO5 - 6.5 MM DRILL)

N61 TO5

N62 MO6

N63 G90 GO0 G54 X100.0 Y125.0 S1100 MO03 TO6
N64 G43 z25.0 HO5 MO8

N65 G99 G83 R2.5 Z-75.0 Q12.0 F175.0
N66 X125.0

N67 Y150.0

N68 G80 GOO Z25.0 M09

N69 G28 z25.0 MO05

N70 MO1

(HOLE 1 LOCATION)

(HOLE 1 DRILLED)
(HOLE 2 DRILLED)
(HOLE 3 DRILLED)

Although the application is simplified (only one tool is used), it is clear that only three num-
bers, three values, have changed in the whole program. Needless to say, more tools used or more
complexity in machining may bring more changes to the program - yet the basic approach does
not change at all. The majority of the program data remains identical in both instances. The obvi-
ous disadvantage is that if a change is necessary in one program, it will also be necessary in the
other program. This could lead to administration problems and possible errors.

With variable data, with the basic features macros offer, only one master program is needed. In
this master program, the three variable machining data will be defined as - variables. By changing
the definitions of the three variable data, the machining will proceed as intended, whether the soft
material or the hard material is used.

For convenience and the ability to change the variable data quickly, it is usually positioned at
the top of the program (at its beginning). Here are the definitions for the softer material, in its first
macro version:

00008 Soft material
#1 = 1500 Spindle speed
#2 = 225.0 Feedrate

#3 = 15.0 Peck drill depth

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

ASSIGNING VARIABLES

103

Once the cutting conditions are defined as variables, they can be used anywhere in the program:

(TO5 - 6.5 MM DRILL)

Né61 TO5

N62 MO6

N63 G90 GO0
N64 G43 Z25.
N65 G99 G83
N66 X125.0
N67 Y150.0
N68 G80 GOO
N69 G28 z25.
N70 MOl
N145 M30

%

G54 X100.0 Y125.0 s#1 M03 TO06
0 HO5 MO8
R2.5 Z-75.0 Q#3 F#2

Z225.0 M09
0 MO5

Spindle speed variable applied

Peck-depth and feedrate variables applied

Once the program O0008 is completed, all three local variables will be cleared automatically.
Note the use of variable numbers. #1, #2, #3 were used arbitrarily. There is nothing wrong with
that, except when a true macro call G65 or G66 is used, the variable values have to be assigned to
the corresponding argument letter. Would it not make sense to get used to the idea right from the
beginning and program letters that look like they 'mean' something? It would make the program
much easier to read and interpret.

In the case presented, it is more practical to use variable #19 (assignment S) for the spindle
speed, #9 (assignment F) for the feedrate, and #17 (assignment Q) for the peck depth. Here is the
above program (still for soft material) modified:

00009

#19 = 1500
#9 = 225.0
#17 = 15.0

(TO5 - 6.5 MM DRILL)

N61 TO5

N62 MO6

N63 G90 GOO
N64 G43 Z25.
N65 G99 G83
N66 X125.0
N67 Y150.0

N68 G80 GOO
N69 G28 Z25.
N70 MOl
N145 M30

%

G54 X100.0 Y125.0 s#19 MO3 TO06
0 HO5 MO8
R2.5 Z-75.0 Q#17 F#9

Z25.0 M09
0 MO5

Soft material
Spindle speed
Feedrate

Peck drill depth

Spindle speed variable applied

Peck-depth and feedrate variables applied

Again, when the program O0008 is completed, all local variables will be cleared automatically.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

104 Chapter 8

Program for the harder material only replaces the three variable definitions (#19, #9, and #17)
listed at the program beginning - the rest of the program (for TO5 in the example) does not change
at all - all blocks between N61 and N145 are identical:

00010 Hard material
#19 = 1100 Spindle speed
#9 = 175.0 Feedrate

#17 = 12.0 Peck drill depth

(TO5 - 6.5 MM DRILL)

N61 TO5

N62 MO6

N63 G90 GOO G54 X100.0 Y125.0 S#19 MO3 TO06 Spindle speed variable applied

N64 G43 Z25.0 HO5 M08

N65 G99 G83 R2.5 Z-75.0 Q#17 F#9 Peck-depth and feedrate variables applied
N66 X125.0

N67 Y150.0

N68 G80 GOO z25.0 M09

N69 G28 Z25.0 MO5

N70 MO1
N145 M30 All three local variables are cleared
%

This method of using variables in the main program without actually developing macros can be
a very powerful way to make many jobs more flexible and economical to run.

So far, the common variables (#100+) have not yet been discussed. Can they be used with
some additional benefits? Once you understand their purpose, the decision will be yours.

In short, yes, the common variables (#100+) could also be used, but with a little benefit. Take
the above example for what it is - it only atfempts to demonstrate the principles of local variables,
not necessarily present their most efficient usage. As a matter of fact, there are several other ways
to improve on this program, all a little advanced at this point. One method includes the use of op-
tional stop, providing function can be used in the middle of a command (not all controls support
this feature). As a rule, keep away from using the block skip function (the slash function /) from
programs using variables and particularly from using it in macros. There are times when the block
skip function can be used very effectively, and times when it should not be used at all, for exam-
ple, with variables. Since a block skip function is a very primitive branching method, to provide
some minimum 'branching’ flexibility to standard programs, it is actually not needed it in macro
programs at all. Macros offer a number of very sophisticated programming features - especially
designed for branching - with much superior control than block skip function can provide.

At this level of macro program development, there is a possible small improvement that can be
used to make the programming effort more efficient that has nothing to do with macros. The pro-
gram for tool TOS can be stored as a subprogram, which can include all local variables. As long as
the variables are defined in the main program before the subprogram call, this improvement can
be very useful. When one set of parts is done, the variables will be changed for different cutting
conditions, and the same subprogram can be called again. However, this brings very close the
subject of 'real' macros - a subject needed to learn in more depth.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

ASSIGNING VARIABLES 105

Local Variables and Nesting Levels

Subprograms and macros can both be nested within the program structure. Nesting, as a pro-
gramming feature, means that one subprogram or one macro can call another subprogram or a
macro, which can call another subprogram or a macro, and so on, up to four levels deep. Having a
four-level depth of nesting offers some real programming power, but it is rather rare to program
more than two levels of nesting depth. Regardless of how many levels the macro (or subprogram)
is nested, it is important to understand the relationship between local variables and each macro
level. Figure 18 is a schematic representation of the macro nesting, showing all four levels:

i ® 00001 — 09001 — 09002 — 09003 — 09004
(MAIN) (SUBPRG) (SUBPRG) (SUBPRG) (SUBPRG)
#1=... #1=.. #1=... #1=... #1=..
#33=... #33=... #33=... #33=... #33=...
G65 P9001 -- = ¥G65 P9002 -- - ¥-G65 P9003 -- - ¥ G65 P9004 -- ¥
M30 LY M99 LY M99 LY M99 LY M99
% % % % %

Figure18

Local variables definitions and levels of macro nesting

As the illustration shows, each set of local variables #1 to #33 can be defined up to five times -
once in the main program, and once for each macro level (up to four more times).

Every time a new nesting level is processed, the new set of variables takes over for that macro,
but the old set is still in memory, and will be recalled when the macro returns to the level it origi-
nated from. The variables will still retain their values. Remember that it is the miscellaneous func-
tion M99 that clears all local variables, not a jump to another program. Until the program flow
encounters the M99 function (end of subprogram or a macro), no local variable is cleared. When
the whole program is completed, program end function M30 will clear any and all local variables
defined in the main program. Local variables cannot be passed from one macro to another - that is
why they are called /ocal variables.

In many macro development cases, there is a strong need to pass a defined variable from one
macro to another macro. For nesting, this requirement presents no problem, as just shown. The
problem becomes apparent, when the local variables have been cleared and there still is the need
to pass one or more variable values to another macro. To achieve this goal, Fanuc offers another
set of variables - another range - called the common variables - variables that can be passed from
one macro to another, without being cleared before the transfer.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

106 Chapter 8

Common Variables

The sole purpose of common variables is that they remain active when the macro they were de-
fined in is completed. Make sure to understand how the common variables work (there are some
differences between control models), and also when and how the common variables are cleared.

Common variables are never assigned as arguments in the G65 macro call. They can only be
defined in the macro body, and they start with the first common variable - #100. There is another
range of common variables, one that starts with the common variable #500. The difference be-
tween the two is very significant:

Variables #100 to #199 are cleared when the power of the control system is turned off

Variables of the #500 to #999 range remain in effect
even when the power to the control system has been turned off

For the common variables in the ranges #100 fo #199 and #500 fo #999, Fanuc offers four
available options (actual number of available variables) on its various controls:

O #100 fo #149 and #500 fo #549 Option A
(J #100 fo #199 and #500 fo #599 Option B
(d #100 fo #199 and #500 fo #699 Option C
(d #100 fo #199 and #500 fo #999 Option D

If the optional range of common variables is available (#100 fo #199 and #500 7o #999),
some loss of storage space is normal and should be expected. For the first three options (A, B, and
C), the available memory will decrease by about 1000 characters, the memory storage capacity
for the D option will decrease by about 3000 characters. Usually, this loss does not present a ma-
jor hardship, but is a loss that should be considered when using the various options.

Volatile and Nonvolatile Memory Groups

In computing terms, the words volatile and nonvolatile are associated with the available RAM
(Random Access Memory) of the computer. Important data has to be saved to files, in order to
guarantee that the data is permanently stored. However, during the data development itself (for
example, during word processing), the unsaved data in temporarily kept in the computer random
access memory until it is saved. If there is a power interruption or a software failure before the
data can be saved to a file, this data is lost, because RAM is a volatile type of memory.

The common variables #100 to #149 or the optional set of #100 to #199 are automatically
set to the null value (empty and vacant), when the power of the CNC system is turned off. This
group of variables is called the volatile group.

Variables in the range of #500 to #999 will hold the stored data, even after the CNC system is
turned off (power-off). This group of variables is called the nonvolatile group.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

ASSIGNING VARIABLES 107

Input Range of Variables

All local and common variables (but not the system variables) can be programmed with a large
range of input values. Even when seldom needed, it is important to know that there are maximum
and minimum limits within the range and what the limits actually are. The limit ranges for local
and common variables used in macros are:

Input of zero 0
Negative input -1047 fo -10.29
Positive input 10.29 t0 1047

An out-of-range input, or an invalid out-of-range result of a calculation, will always result in an
alarm condition. For example, alarm No.I11 is generated on Fanuc 16/18/21 controls, in case of
out-of-range value.

Out-of-Range Values

If the row of asterisks, for example, ******** appears in the variable data display on the
control screen, it indicates an out-of-range value, either as an overflow or an underflow value of
the input data or calculation. This unwanted result is usually caused by an incorrect formula, typ-
ing error or some other calculation input.

Definitions of both overflow and underflow conditions can be easily defined:

OVERFLOW value is defined
when the absolute value of the variable
is greater than 99999999.0

UNDERFLOW value is defined
when the absolute value of the variable
is less than 0.0000001

Calculator Analogy

Overflow and underflow situations occurring in macro execution can be compared to errors
generated by most scientific calculators. For example, when attempting to calculate the tangent
value of a ninety degree angle - entering TAN..90 or 90..TAN (tangent of ninety degrees) will re-
sult in error (correct keyboarding is assumed).

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

108 Chapter 8

Set Variable Name Function SETVN

On the some controls, for example the Fanuc 15, common variables of the 500+ range can be
set to a common name, up to eight characters long. This is a very convenient reminder that these
are special variables, usually permanent, and should not be tampered with.

The function available for this purpose is called SETVN (Set Variable Name), and can be used
with a single variable or a range of variables:

SETVN500 [PROBEDIA] Variable name defined for #500
#500 = 6 Value of defined variable assigned

A string of definitions will define a range of a sequential variable, when the starting variable is
specified:

SETVN500 [PROBEDIA, HOLEDIA, XPOS, YPOS] Variable names defined, starting with 500

#500 = 6 Value of the starting variable PROBEDIA defined
#501 = 78.0 Value of the next variable HOLEDIA defined
#502 = 300.0 Value of the next variable XPOS defined

#503 = 250.0 Value of the next variable YPOS defined

This section is only included here to provide additional information, not necessarily as a tool for
everyday macro work. Usage of the SETVN function in macros is not common.

Protection of Common Variables

Common variables #500 to #627, for Fanuc 10/11/15 only, can be protected from any data in-
put. Typically, the set value to be protected is input first, while the variable is not protected - then
the variable or variables can be protected by setting two system parameters:

Parameter 7031 The first variable to protect (input is 0 to 127)

Parameter 7032 The number of variables to protect (input is 0 to 127)

&« Example:

Fanuc 15 control parameter 7031 is set to 11, while parameter 7032 is set to 5 - then ...:

Variables #511, #512, #513, #514, and #515 will be protected from data input, such as
copying, editing, deleting, etc.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACRO FUNCTIONS

Up to now, the macro related subjects covered macro structure, local and common variables
(system variables are still to come), and assigning variables. Fanuc Custom Macros support a va-
riety of special functions that can be used in the body of a macro and some even in the body of the
main program or subprogram. These functions are typically associated with mathematical calcula-
tions, logical operations, conversions, and various formulas. All together, they form a very strong
group of macro programming tools.

Function Groups

Several macro examples have been presented in the previous chapters. In this chapter, the sub-
ject of functions will be covered in great detail, including examples of their usage.

Fanuc CNC system (in the macro mode) can perform many arithmetic, algebraic, trigonomet-
ric, miscellaneous, and logical calculations on existing variables, using various formula formats
and conversions. For macros, the CNC programmer has a complete control. In the definition for-
mat of variables, the expression at the right side of the equal sign (=) may contain constants and
various combined operations. There are some restrictions and limitations mentioned throughout
the handbook, but overall, the subject of functions adds a very powerful and desired tool to macro
programming.

Macro functions can be separated into groups, to make their understanding and usage easier to
learn. When viewing the various settings of active variables on the control display screen, it is not
unusual to see data with many leading and trailing zeros. This appearance is all part of the display
only - the zeros are often not written in the macro program.

In all examples, the leading and trailing zeros are ignored, unless they are specifically required.

The available macro functions can be divided into six groups:
¢ ARITHMETIC functions
¢ TRIGONOMETRIC functions
¢ ROUNDING functions
¢ MISCELLANEOUS functions
¢ LOGICAL functions and operations

¢ CONVERSION functions

109

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

110 Chapter 9

Definition of Variables Revisited

The local variables can be defined in the macro call G65 or G66, or in the main program itself.
The common variables can only be defined in the body of the program, either in the main pro-
gram, or in the macro. Typically, the variable is defined first, and used later, once or many times.
This process is called 'referencing' a variable.

Referencing Variables

Referencing a variable means replacing the variable number with the previously stored data
value. For example, in one of the earlier examples, the cutting feedrate value was stored into the
variable #9:

#9 = 225.0 Assigns the value of 225.0 to variable #9

In the program, the feedrate was called as a normal CNC word, by referring the variable to the
F-address but writing it as F#9. A local variable not available as a letter in the Assignment List (1
or 2) can only be referenced in the program body:

#33 =1 Assigns the value of 1 to variable #33

In the program, the new variable can be used by itself or in an expression:

WHILE [#33 LE 6] DOl Repeat a loop as long as condition [#33 LE 6] is true

The variable #33 is not associated with any letter; in the example, it is used as a counter. It is
used for evaluating the program flow, in a conditional statement - [#33 LE 6] is the condition.
This subject will be covered in Chapter 13.

Not all values have to be positive. Negative definitions and references are very important in
macros, and many errors are often caused by an incorrect referencing. Watch the difference in the
following examples - the objective is to program the Z-depth as Z-12.75, using variable data:

#26 = 12.75 Assigns the positive value (12.75) to variable #26

In the program, the Z-depth must be programmed as Z-#26. The called variable must be nega-
tive! Can the definition itself be negative? Yes, it can:

#26 = -12.75 Assigns the negative value (-12.75) to variable #26

In the program, the Z-depth must be programmed as Z#26. The called variable must be posi-
tive!

There is a way to always guarantee that the required value will be negative, regardless whether
the input value is positive or negative. It uses the macro function ABS - absolute value of a num-
ber, explained in the miscellaneous function section of this chapter.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACRO FUNCTIONS 111

Vacant or Empty Variables

In many cases, a variable may also be undefined. In this case, the variable is 'defined' as #0,
which identifies a null variable (null state). A null variable has no value, it is vacant. It can be
read, but it cannot be written to - these types of variables are often called the read-only variables.
For example,

#500 = #0 Assigns a null value to variable #500
#33 = #0 Assigns a null value to variable #33
#1 = #33 + #500 #1 will add 0 to a 0 and return 0

The section describing various arithmetic functions in this chapter also describes handling of va-
cant variables in calculations. A null variable is also called a vacant or an empty variable. In a
macro, certain rules of vacancy apply. It is important to know the return value of a variable, when
vacancy is in effect.

Do not confuse a vacant variable with a variable that has a zero value !

#101
#102

0 Variable #101 has a zero value - stored value is 0 !
#0 Variable #102 is vacant (empty) - no value !

Using these two variables as stored, look at the stored values of variables that use them:

#1 #101 Variable #1 has a zero value - stored value is 0 !
#2 = #102 Variable #2 is vacant (empty) - no value !

More complex applications include axis motion commands, math functions and conditional ex-
pressions. These are the three conditions to watch for in terms of vacancy rules - they relate to the:

([Addresses for axis motion command
(4 Mathematical operations
(4 Conditional expressions

Only the first two conditions are explained in this chapter, the last one is described in the chap-
ter on branching and looping.

Axis Motion Commands and Null Variables

If an undefined variable is referenced, the variable is ignored during processing of tool motion,
for example:

G90

#24 = #0 Used for X-axis: X-value is null = no X-value
#25 = #0 Used for Y-axis: Y-value is null = no Y-value
GO0 X#24 Y#25 Same as GO0 only (with no X or Y axis)

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

112 Chapter 9

The previous example will result in the equivalent of GO0 rapid command only. The X-value
and the Y-value in the example will be ignored! Fanuc does not 'assume’ any value, and there is
no default option.

If only one of the variables is undefined, only that variable will be ignored, the other one will be
processed as intended:

G90

#24 = #0 Used for X-axis: X-value is null
#25 = 0 Used for Y-axis: Y-value is O
GO0 X#24 Y#25 Same as GO0 YO (with no X axis)

The previous example will result in the equivalent of GO0 YO0 motion command. The X-value in
the example will be ignored!

On the other hand, if the value of a variable is 0 (zero), it becomes the value of the specified
axis motion address:

G90

#24 = 0 Used for X-axis: X-value is 0

#25 = 0 Used for Y-axis: Y-value is 0

GO0 X#24 Y#25 Same as GO0 X0 YO (both axes are active)

Errors caused by the wrong referencing of variables used for axis motion commands are easy to
make, but often difficult to find.

Terminology

Just like any other field, CNC programming has its own special words, its own jargon - its own
terminology. Macros, being a part of CNC programming, share the terminology and add some
more of its own. In macros, there are several expressions related to variables and functions that
may not be familiar. Some of these terms may be self-explanatory, others could be misunderstood
and should be qualified.

Here is the list of the most common terms and expressions related to macros:

(4 Evaluate ... Process - or act upon - the given variable or function

1 Current value The value stored in a variable at a given time

(1 Contents of ... Same as Current value

d Referencing Previously defined variable is called by its number

(d Returned value The new value that is the result of a calculation

(1 Resultof... Same as Returned value

(d Substitution Storing new data in a previously defined variable, also known as redefinition
(d Redefinition Same as Substitution

Many of these terms are used throughout the handbook, and in many other publications.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACRO FUNCTIONS 113

Arithmetic Functions

There are several macro functions relating to mathematical calculations. The simplest of them
are the four basic arithmetic functions, used in variables and also available to the macros. The
arithmetic functions use the following symbols:

+ - * /
Function Known as ... Symbol
Sum Addition +
Difference Subtraction -
Product Multiplication *
Quotient Division /

In order to understand any function, it is important to evaluate a few examples. In the following
examples, the function is on the left, its returned value - the result - on the right:

#1 = 3.5 3.5 Returned value of variable #1 is 3.5
#2 = 4.25 4.25 Returned value of variable #2 is 4.25
#3 =2.0 + 5.0 7.0 Returned value of variable #3 is a sum of 2+5
#4 = #3 + 1 8.0 Add 1 to the result of variable #3
#5 = #2 - 0.8 3.45 Subtract 0.8 from the current value of variable #2
#6 = #1 - #3 -3.5 Subtract contents of #3 from the contents of #1
#7 = #2 * 6 25.5 Multiply contents of #2 by 6
#8 = 7.0 / 8.0 0.875 Divide 7 by 8 as real numbers
#9 =7 / 8 0.875 Divide 7 by 8 as integer numbers

Nesting

Nesting means the contents of brackets (not parentheses) will be processed first - compare:
#10 = 9.0 - 3.0 / 2.0 7.5 Division first, then multiplication

#11

[9.0 - 3.0] / 2.0 3.0 Multiplication first, then division

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

114 Chapter 9

Arithmetic Operations and Vacant Variables

So far, the focus was at vacant variables as they were applied to the axis motion command. Va-
cant variables can also be used as a part of the various mathematical operations, and it is very im-
portant to understand how they behave in that environment. Mathematical operations include
redefinition (substitution) of variables, as well as arithmetic, algebraic, trigonometric, and other
types of calculations. On the basic level, the rules are slightly different for addition and subtrac-
tion than for multiplication and division. The following examples should clarify the most common
possibilities encountered in macros:

« SUBSTITUTION

& Vacant variable substituted will remain vacant:

#1
#2

#0 #1 defined as vacant
#1 #2 also defined as vacant

& Zero value variable substituted will remain zero:

#1 =0 #1 defined as a zero value
#2 = #1 #2 also defined as a zero value
« ADDITION

& Vacant variable added to a value is the same as an increase by zero:

#1 = #0 #1 defined as vacant
#2 = 15.7 + #1 #2 will add 0 and return 15.7
#3 = #1 + #1 #3 will add 0 to a 0 and return 0

& Zero value variable added to a value is the same as an increase by zero:

#1 =0 #1 defined as zero
#2 = 15.7 + #1 #2 defined as 15.7
#3 = #1 + #1 #3 will add 0 to a 0 and return 0

« SUBTRACTION

& Vacant variable subtracted from a value is the same as a decrease by zero:

#1 = #0 #1 defined as vacant
#2 = 15.7 - #1 #2 will subtract 0 and return 15.7

& Zero value variable subtracted from a value is the same as a decrease by zero:

#1 =0 #1 defined as zero (0)
#2 15.7 - #1 #2 will subtract 0 and return 15.7

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACRO FUNCTIONS 115

« MULTIPLICATION

¢ Multiplication by a vacant variable is the same as a multiplication by zero:

#1 = #0 #1 defined as vacant
#2 = 15.7 * #1 #2 will multiply by 0 and return 0.0

¢ Multiplication by a zero value variable is the same as a multiplication by zero:

#1 =0 #1 defined as zero
#2 = 15.7 * #1 #2 will multiply by 0 and return 0.0
« DIVISION

¢ Division by a vacant variable is the same as a division by zero:

#1
#2

#0 #1 defined as vacant
15.7/#1 #2 will divide by 0 and return 0.0 (Error condition)

¢ Division by a zero value variable is the same as a division by zero:

0 #1 defined as zero (0)
15.7/#1 #2 will divide by 0 and return 0.0 (Error condition)

#1
#2

Division by Zero

Even the least expensive pocket calculator returns an Error message, if the calculation attempts
to divide any value by zero. CNC system and macro calculations are no different. The two divi-
sion examples above illustrate the point. Although the returned value may be a displayed zero, this
value cannot be used, because of the error (alarm) condition that has been caused. To eliminate
the error condition, the control system has to be reset first, then the cause of the error eliminated.

¢ Division BY zero is not permitted
#1 = 5/0 Returns an error condition
¢ Division OF zero is permitted (although seldom used)

#1 = 0/5 Returns zero (0)

It is unlikely that the programmer would divide by zero in the program directly, unless in error.
What is more likely reason for such an error is a result of a calculation:

#1 =5 Value of 5 stored in #1
#2 = §1 - 5 Value of 5 subtracted from #1, returning 0
#3 = 10/4#2 Value of 10 divided by #2, which is zero - result is ERROR

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

116 Chapter 9

Trigonometric Functions

Trigonometric variables available in macros are used to calculate angles or data related to an-
gles. Examples include calculation of rectangular coordinates, solution of right angle triangles,
angle values, etc. All trigonometric functions can be applied in macros, although not all are avail-
able on all Fanuc control models. The most common entry of an angle will be in the decimal for-
mat. For many part drawings that still indicate angles in the Degrees-Minutes-Seconds format
(D-M-S), translation to decimal degrees is necessary.

Conversion to Decimal Degrees

An angle can be expressed either as a whole number, for example 38, or as a decimal degree
representation, for example 12.86. The Degrees-Minutes-Seconds format (D-M-S) is not allowed,
is generally considered obsolete in modern CAD/CAM, and must be converted to decimal degrees
first, if necessary.

The conversion is quite simple:

M
D,=D+— + S
60 3600
1" where
D, = Decimal degrees
D = Degrees (sometimes indicated as H or HR on calculators)
M = Minutes (there is 60 minutes in an hour)
S = Seconds (thereis 3600 seconds in an hour)

&« Example:

10°36’27” = 10 + 36/60 + 27/3600 = 10.6075°

Of course a calculation using variables can be used for the same purpose:

#1 = 10.0 Value of degrees
#2 = 36.0 Value of minutes
#3 = 27.0 Value of seconds
#101 = #1 + #2/60 + #3/3600 Result is decimal degrees of the given D-M-S angle

Available Functions

The following trigonometric functions are generally available for macros:

SIN Cos TAN ATAN ASIN ACOS

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACRO FUNCTIONS 117

All input for SIN, COS, and TAN is in degrees and the output of the inverse functions ATAN,
ASIN and ACOS is also in degrees.

Inverse functions are usually marked as zan”, sin”, and cos™ on the calculator.

#1 = SIN[38] 0.6156615 (actual value must be in brackets)

#2 = 23.7 23.7

#3 = COS[#2] 0.9156626 (reference to a variable must be in brackets)
#4 = TAN[12.86] 0.2282959

The inverse trigonometric functions accept the length of two sides of a triangle, both enclosed in
brackets, and separated by the slash symbol standing alone between them. The acceptable range is
within 0 <= RESULT < 360:

#5 = ATAN[0.25]/[0.5] 26.5650512 (note the position of the slash !!!)

ASIN and ACOS functions are not available on 0/16/18/21 model controls !

Rounding Functions

Calculations often result in a value with too many decimal places. In CNC work, only three dec-
imal places can be used for metric units, or four decimal places for English units in the program or
a macro. Some rounding is necessary and should be expected. There are three functions available
in macros that control the rounded value of a given number - they are similar to each other, but
definitely not the same:

ROUND FIX FUP

The ROUND function is designed to round off the supplied value to a whole number (round off
fractions under 1.0). The function disregards fractions that are less than 0.5. For fractions that are
equal to or greater than 0.5, the next whole number is the rounded value:

ROUND[0.00001] Returns 0.0
ROUND[0.5] Returns 1.0
ROUND[0.99999] Returns 1.0
ROUND[1.0] Returns 1.0

A value that had been stored previously into a variable, can be rounded in the same way as a di-
rectly input value:

#1 = 1.3 Returns 1.3
#2 = 1.6 Returns 1.6
ROUND [#1] Returns 1.0
ROUND [#2] Returns 2.0

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

118 Chapter 9

There are small differences in usage of the ROUND function, depending on application. If the
ROUND function is used in a definition of a variable, the rounding effect will always be to the
nearest integer value. For example:

#101
#102

19/64 Returns 0.296875
ROUND[#101] Returns 0.0

The ROUND function may also be used in a CNC statement. First, store a value:

#101 = 19/64 Returns 0.296875

In the English system of units, the smallest unit increment is 0.0001 of an inch, so the rounding
will be to the four decimal place accuracy (also known as rounding to the least increment). In a
CNC statement, the rounding will be accurate to 4-decimal places:

G20 English mode
#101 = 19/64 Returns 0.296875 (English units)
G91 GO1 X[ROUND[#101]] F10.0 Uses X0.2969 motion

In the metric system of units, the smallest unit increment is 0.001 of a millimeter (one micron),
so the rounding will be to the three decimal place accuracy (to the least increment). In a CNC
statement, the rounding will be accurate to 3-decimal places:

G21 Metric mode
#101 = 19/64 Returns 0.296875 (Metric units)
G91 GO1 X[ROUND[#101]] F250.0 Uses X0.297 motion

As a simplified example of a possible application, several simulated motions will be pro-
grammed using a predefined fractional dimensions. The tool will move in three stages - rapid out
from the start position, feed out a little further, and rapid back in to the start position (only one
axis is used in the demonstration). In order to test the usage of the ROUND function on the machine
control, first enter the following program into the control system, then register the current XY co-
ordinate of the tool position at the start of processing:

N1 G20 English units input

N2 #100 = 3 + 19/64 Input value of 3.296875 (motion A)

N3 #101 = 2 + 5/64 Input value of 2.078125 (motion B)

N4 G91 GOO X-#100 Incremental motion A to the left X-3.2969

N5 GOl X-#101 F20.0 Incremental motion B to the left X-2.0781

N6 GOO X[#100+#101] Incremental motion A+ B to the right may not be rounded
N7 MOO End of example

Compare the tool position at the beginning of the test, before running the program, and com-
pare it with the tool position after the program has been executed. The tool position coordinates
XY may or may not be the same. The start position and the end position of the tool may be off, de-
pending on the type of value to be rounded. This problem is compounded by the fact that the error
is accumulative - the more parts are machined, the more severe the deviation error will be. This is
due to the rounding effect of the control system.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACRO FUNCTIONS 119

To correct the accumulative error, or if you want to be absolutely certain, you have to round the
motion in one direction to equal to the motion in the opposite direction:

N1 G20 English units input

N2 #100 = 3 + 19/64 Input value of 3.296875 (motion A)

N3 #101 = 2 + 5/64 Input value of 2.078125 (motion B)

N4 G91 GOO X-#100 Incremental motion A to the left X-3.2969

N5 GOl X-#101 F20.0 Incremental motion B to the left X-2.0781

N6 GOO X[ROUND[#100]+ROUND [#101]]1 Incremental motion A+B to the right will be rounded
N7 MOO End of example

Rounding to a Fixed Number of Decimal Places

There are times when a fractional value has to be rounded to a specific (fixed) number of deci-
mal places. Typically, three decimal places are required for the metric system, four decimal
places are required for the English system, and perhaps one decimal place is required for cutting
feedrate, regardless of the units selected.

In the following two examples, two given values will use a few techniques, providing the results
of different rounding methods:

& Example 1 - Given fractional value is over 0.5 :
#1 = 1.638719 Value to be rounded to a specific number of decimal places

If the ROUND function is applied to this defined value, it will return the next whole number:
ROUND [#1] Returns 2.0

In order to round the given value to a certain number of decimal places, the total of three steps
will be necessary.

STEP 1 - The first step requires the given value to be multiplied by the factor of:

10 ... to round off to one decimal place

100 ... to round off to two decimal places

1000 ... to round off to three decimal places typical for metric system
10000 ... to round off to four decimal places typical for English system
... and so on

For example:

#2 #1 * 1000 Returns 1638.719 (Metric example)
#3 = #1 * 10000 Returns 16387.19 (English example)

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

120 Chapter 9

STEP 2 - The second step requires using the ROUND function on the returned value:

#2
#3

ROUND [#2] Returns 1639.0 (based on the result of Step 1)
ROUND [#3] Returns 16387.0 (based on the result of Step 1)

STEP 3 - The third step will divide the rounded value by the same multiplying factor as before:

#2 #2/1000 Returns 1.639 (based on the result of Step 2)
#3 = #3/10000 Returns 1.6387 (based on the result of Step 2)

In the macro program, the three steps can be used as described, but a more common method is
to process all three functions in a single nested statement:

#1 = 1.638719 Value to be rounded to a specific number of decimal places
#2 = ROUND[#1*1000]/1000 Returns 1.639
#3 = ROUND[#1*10000]/10000 Returns 1.6387

Improper rounding may cause a cumulative error in calculations !

& Example 2 - Given fractional value is under 0.5 :

#4 = 1.397528 Value to be rounded to a specific number of decimal places
If the ROUND function is applied to this given value, it will return the last whole number:

ROUND [#4] Returns 1.0

In order to round the given value to a certain number of decimal places, the total of three steps
will be necessary.

STEP 1 - The first step requires the given value to be multiplied by the factor of:

10 ... to round off to one decimal place

100 ... to round off to two decimal places

1000 ... to round off to three decimal places typical for metric system
10000 ... to round off to four decimal places typical for English system
... and so on

For example:

#5 #4 * 1000 Returns 1397.528 (Metric example)
#6 = #4 * 10000 Returns 13975.28 (English example)

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACRO FUNCTIONS 121

STEP 2 - The second step requires using the ROUND function on the returned value:

#5
#6

ROUND [#5] Returns 1398.0 (based on the result of Step 1)
ROUND [#6] Returns 13975.0 (based on the result of Step 1)

STEP 3 - The third step will divide the rounded value by the same multiplying factor as before:

#5
#6

#5/1000 Returns 1.398 (based on the result of Step 2)
#6/10000 Returns 1.3975 (based on the result of Step 2)

In the macro program, the three steps can be used as described, but a more common method is
to process all three functions in one nested statement:

#4 = 1.397528 Value to be rounded to a specific number of decimal places
#5 = ROUND[#4*1000]/1000 Returns 1.398
#6 = ROUND[#4*10000]/10000 Returns 1.3975

Accuracy in rounding is extremely important, not only for the final dimensions of the machined
part, but also for tracking errors in the macro program. Inaccuracies caused by cumulative round-
ing error are not always easy to find.

Always use care in programming rounded values

FUP and FIX Functions

The remaining two rounding functions are used to round a given value up or down only, regard-
less of whether the decimal portion is over or under 0.5.

The FUP function is designed to round up the given value (raise fractions less than 1.0).

FUP[0.00001] Returns 1.0
FUP[0.5] Returns 1.0
FUP[0.99999] Returns 1.0
FUP[1.0] Returns 1.0

The FIX function is designed to round down the given value (discard fractions less than 1.0) -
i.e., strip all values after decimal point.

FIX[0.00001] Returns 0.0
FIX[0.5] Returns 0.0
FIX[0.99999] Returns 0.0
FIX[1.0] Returns 1.0

The FUP and FIX function are commonly used in establishing the number of iterations (count-
ing loops) and for other counting (rather than calculating) purposes.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

122 Chapter 9

Miscellaneous Functions

Five macro oriented miscellaneous functions are available for programming macro expressions.
The following five functions are available:

SQRT ABS LN EXP ADP

Do not confuse these macro functions with CNC miscellaneous functions, such as MO1.

SQRT and ABS Functions
Only the first two functions listed are used frequently in macros.

The SQRT function calculates the square root of a number supplied between brackets:

SQRT[16] Returns 4.0
SQRT[16.0] Returns 4.0
#1 = 16.0 Returns 16.0
SORT [#1] Returns 4.0

The ABS function (absolute function) always returns a positive value of a given number:

ABS[-23.6] Returns 23.6
ABS[23.6] Returns 23.6

Using the ABS function is very useful when integrity of the supplied or calculated value is im-
portant in terms of a mathematical sign. The ABS function will always return a positive equivalent
of the supplied numerical value and guarantees a returned positive number.

The next example uses the ABS function, to guarantee the required sign of a given number.

& Example - using the ABS function :

Programming a depth of a tool (end mill, drill, tap, etc.) as an assigned value in the macro call
G65, chances are that the assignment representing the Z-depth will be entered as negative value,
especially for jobs where the ZO0 is set at the top of the part - for example:

G65 P8999 R2.0 Z-15.6 F175.0
Somewhere within the body of macro program 08999, the program section that calls the vari-

able #26 (Z-depth), must be entered without the minus sign:

G99 G81 R#18 zZ#26 F#9

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACRO FUNCTIONS 123

This is a correct application, but not a safe application. What happens, if the programmer acci-
dentally enters the Z-depth argument as a positive value? The tool will move above the work, in-
stead of into the work. It may not present a big problem but an irritation it is. Of course, the signs
of the argument and macro data could be reversed - the G65 Z-depth argument will be a positive
number, for example Z15.6, the variable call in the macro will be negative, for example Z-#26.
Again - good, but still not a safe application. What if the argument is also defined as negative?

Using the ABS function - and a little ingenuity - the G65 Z-depth argument can be programmed
with either a positive value or a negative value, and still get a negative cutting direction (Z-minus
direction). Impossible? Study the next examples - whether the Z-depth argument is defined as pos-
itive or negative, only one macro is used with a guaranteed direction of the toolpath into the
material:

& Positive Z-depth argument:
G65 P8999 R2.0 Z15.6 F175.0 Z-depth argument is positive
& Negative Z-depth argument:

G65 P8999 R2.0 Z-15.6 F175.0 Z-depth argument is negative

The key to success is the macro call. It must use the ABS function that will convert the argument
into a positive value. Then using a negative Z-value, the tool motion will always be into the part:

G99 G81 R#18 Z-[ABS[#26]] F#9 Negative Z guarantees negative tool motion

Note the Z-depth entry - it must negative within the macro! Once the macro is proven and saved,
it can be protected by a parameter setting, so there is no danger of an accidental change. What ex-
actly will happen when the above macro statement is processed?

If the specified argument is positive, ABS [#26] will leave it as positive, so ABS [#26] will be
equal to 15.6. Since the Z-value in the macro is fixed as negative, the negative sign will precede
the stored value and the result will be Z-15.6, which is the desired and correct entry.

If the specified argument is negative, ABS [#26] will change it into a positive value, so the
ABS[#26] will be equal to 15.6. Since the Z-value in the macro is fixed as negative, the negative
sign will precede the stored value and the result will also be Z-15.6, which is the correct entry.

NOTE: This example is simple and perhaps even clever. Although it illustrates a relatively
small macro function, it is included here not only for the purpose of defining variables, but also
for the purpose of a professional approach to programming. In macros, one of the biggest assets
the programmer may have is the ability to predict what can go wrong, before it goes wrong. What
kind of input error is possible, or even likely? Is there a way to protect the macro flow from such
an error? If there is, write the appropriate program code. If there is not, at least try to find a way.

Not all errors in calculations can be expected and prevented. Some errors may be possible, but
virtually impossible to prevent. Perhaps a message or a comment to the CNC operator may do
some good in minimizing the possibility.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

124 Chapter 9

LN, EXP and ADP Functions

The remaining three miscellaneous macro functions are used for special purposes only:

LN Natural logarithm function
EXP Exponent with the base 'e' function
ADP Add a decimal point function

These functions are not available on 0/16/18/21 model controls.

The LN function, the EXP function, and the ADP functions are rarely used. On the controls that
accept these functions, the ADP function may be the one most likely to offer some benefit.

The ADP is the Add Decimal Point function. It accepts a local variable (#1 to #33) as an argu-
ment, and adds a decimal point to a value in the macro body, that was passed by the G65 argument
without a decimal point. Parameter #7000 (bit CVA) must be set 0. For example:

G65 P8999 225 No decimal point in the Z-assignment

During macro execution, the value of the Z-variable (#26) will be 25.0, if ADP[#26] is pro-
grammed. This is a function that even Fanuc recommends to avoid and program the decimal point
in the argument, if it is required.

Logical Functions

For a powerful macro development, powerful programming tools are needed. Logical functions
are some of these power tools and they can be divided into two groups:

(1 Logical functions used for creating a CONDITION or a COMPARISON
1 Logical operators performed on BINARY NUMBERS

Boolean Functions

To the first group belong the six standard comparison operators (often called Boolean opera-
tors, or Boolean functions):

EQ NE GT LT GE LE

Boolean functions compare two values and return a true or false condition:

EQ = Equal to
NE = Not equal to
GT = Greater than

LT = Less than
GE = Greater than or equal to
LE = Less than or equal to

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACRO FUNCTIONS 125

Binary Numbers Functions

To the second group belong the three logical operators, used to perform logical operation on a
binary number, bit by bit:

AND OR XOR

These three macro functions are used for logical comparisons in various programming applica-
tions. The two most commonly used functions are the AND and the OR functions; the XOR (Exclu-
sive OR) is used very seldom. All three are used at every bit of 32 bits.

The AND and OR functions compare two given conditions. The compared conditions are evalu-
ated, and return either the TRUE value or the FALSE value. True value means ‘True’, and False
value means ‘Not True’. In plain English, it is easy to understand the difference between the AND
and the OR functions, because they follow the basic logic of the English language.

For example, the sentence “Jack and Jill will go shopping”, means that both of them will go
shopping. The sentence “Jack or Jill will go shopping”, says something different - that only one of
them will go shopping. These functions have their equivalent in all high level languages - they are
called the bit values of TRUE and FALSE, and have one of the two possible values - 1 or 0.

For example, if a given < Value 1> is compared with a given < Value 2>, and used with the
AND function, both values must be true for the whole statement to be true. On the other hand, if a
given < Value 1> is compared with a given < Value 2>, and used with the OR function, only
one value of the statement must be true for the whole statement to be true. In either case, a TRUE
value returns 1, and a FALSE value returns 0.

Boolean and Binary Examples

As an exercise, evaluate the following macro data entries. The first group is the given data, the
second group is the evaluated data, and the final third group is the compared data.

& Givendata:

#1 = 100.0 Stored value is 100.0
#2 = #0 No data - variable is VACANT (empty, null)
#3 = 100.0 Stored value is 100.0
#4 = 150.0 Stored value is 150.0

& FEvaluated data :

#5 = [#1 EQ #2] Returns 0 = FALSE
#6 = [#2 EQ #3] Returns 0 = FALSE
#7 = [#2 EQ #0] Returns I = TRUE
#8 = [#1 EQ #3] Returns 1 = TRUE
#9 = [#4 GT #3] Returns 1 = TRUE

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

126 Chapter 9

&« (Compared data :

#10 = [[#1 EQ #3] AND [#2 EQ #0]] TRUE because both values are true
#11 [[#1 EQ #3] OR [#2 EQ #01]] TRUE because both values are true
#12 [[#1 NE #4] OR [#4 LT #3]] TRUE because at least one value is true
#13 = [[#2 EQ #1] AND [#3 GT #4]] FALSE because neither value is true
#14 = [[#3 NE #0] OR [#1 EQ #2]]] FALSE because only one value is true

In all previous examples, the correct use of the brackets [] in the macro is very important. If
the evaluated conditions are more complex, for example in a multi-depth nesting application, the
brackets will be nested as well, up to so many levels that the macro program will eventually be-
come difficult to interpret. The solution to this problem is to avoid excessive nesting, and use
multi-block definitions instead.

Conversion Functions

Special conversions in a macro program can be used for signal exchange to PMC and from
PMC. (PMC is the abbreviation of Programmable Machine Control, and is not available on all
Fanuc control models). PMC is Fanuc version of PLC - Programmable Logic Controller. The two
functions associated with the conversion are:

BCD BIN

BCD function converts Binary Coded Decimal format into a Binary format, and the BIN func-
tion converts Binary format into a Binary Coded Decimal format. These are not common functions
in a typical macro application, but if used, the knowledge of binary numbers is essential.

Evaluation of Functions - Special Test

The knowledge of how Fanuc control system actually evaluates macro functions is a critical ele-
ment of any macro programming. The next page contains a very comprehensive test that covers as
many functions as possible, several of them dependent on each other. All answers are provided as
returned values next to the macro statement, except the last one, which is a special challenge (see
comments following the test). The test is based on the following G65 block:

G65 P8888 B42.0 C1.427 H30.0 X0.003 Four arguments defined for the test

The above block calls a macro program O8888 and passes four defined arguments to variables
B=#2=42 .0, C=#3=1.427, H=#11=30.0 and X=#24=0.003. The macro O8888 has been
specifically designed for training purposes and applies various functions as examples of usage.
The order of data entry must be followed as presented. Place a sheet of paper to hide the return
values from view, take a calculator, and try to identify the return values before looking at the re-
sults (all leading zeros that may appear on the control screen are omitted in the returned values):

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACRO FUNCTIONS

127

08888 (EVALUATION OF FUNCTIONS - SPECIAL TEST)

#100
#101
#102
#103
#104
#105
#106
#107
#108
#1009
#110
#111
#112
#113
#114
#115
#116
#117
#118
#119
#120
#121
#122
#123
#124
#125
#126
#127
#128
#129
#130
#131
#132
#133
#134
#135
#136
#137
#138
#139
#140
#141
#142
#143
#144
#145
#146
#147
#147
#148
#149

#11

#2

#8

0

#3
#104+4.125
#101-15.0
#104*6.7
#101/2
#101/4104
SIN[O]
SIN[90]
SIN[#101]
COS|[0]
COS[90]
COS[#101]
TAN[O]
TAN[90]
TAN[#101]
ATAN[0.75]/[1.625]
SQRT[16]
SQRT[#100+5]
-13.125162
ABS[#122]
0.327187
ROUND [#124]
FIX[#124]
FUP[#124]
0.8235

ROUND [#128]
FIX[#128]
FUP[#128]
0.5

ROUND [#132]
FIX[#132]
FUP[#132]
3.0

ROUND [#136]
FIX[#136]
FUP[#136]
#3-#120
#[#24]
#105*#105
[#120+1] /TAN[8.6]
6.2+14/3-2*8.32
[6.2+14]/3-2*8.32
SQRT[3.6]

[[#136+#128] *#104+#124]

#147*12
SIN[#147]+#146

#[FUP[#[ROUND [#148]1]]

30.0000
42.0000
Vacant
0.0000
1.4270
5.5520
27.0000
9.5609
21.0000
29.432376
oo negative underflow
1.0000
0.6691306
1.0000
oo positive underflow
0.7431448
ok ok negative underflow
Rlaiaulon positive overflow
0.9004041
24.77514
4.0000
5.9160798
-13.125162
13.125162
0.327187
0.0000
0.0000
1.0000
0.8235
1.0000
0.0000
1.0000
0.5000
1.0000
0.0000
1.0000
3.0000
3.0000
3.0000
3.0000
-2.5730
Vacant
30.824704
33.060961
-5.7733333
-9.9066667
1.8973666
5.7833215
69.399858
2.8334253
722???

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

128 Chapter 9

As established a number of times already, variables that are vacant have no value. Note that
zero - 0 - is an actual real value, so a variable containing a zero value is occupied - it is never va-
cant. Variables that are displayed with *#****#*** are usually the result of calculations involving
infinite values (usually caused by the division by zero).

In the example, probably the most elaborate of all the entries is the last one - stored in variable
#1409 - hence the challenge. Let's evaluate this variable - and its return value - in sufficient detail.

Order of Function Evaluation

Complex functions (such as nested functions) are always evaluated from the inside out. That
means the innermost function of the supplied data is processed first, then the next function, then
the one after and so on and on. In the test example, the innermost function for #149 variable defi-
nition is ROUND [#148].

Since the previously stored value of variable #148 is 2.8334253, the function is evaluated as
ROUND [2.8334253], and its return value is 3. At this point, the function looks like this:

#149 = #[FUP[#[3]]]

... where the return value of the ROUND function has been substituted. The new innermost func-
tion now is #[3]. That is a reference to a variable #3. From the earlier definition, in the G65
statement, #3 is designated by the C letter and had been assigned value of 1.427. The definition at
this point looks like this:

#149 = $[FUP[1.427]]
... where the previously stored value of the #3 has replaced the inner calculation. The new cur-

rent innermost calculation is FUP[1.427]. The FUP function returns the next higher integer,
which is 2 in this case. So the next version of the evaluation is:

#149 = #[2]

This is a simple form to evaluate:
#149 = #[2]

is the same as
#149 = #2

Since #2 is defined by the B letter in the G65 macro call and B is equal to 42.0, therefore, the
final meaning - the ever important return value - of variable #1409 is:

#149 = 42.0

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACRO FUNCTIONS 129

Approach to Practical Applications

This section includes several samples of standard programs and macros working together. The
following examples illustrate the macro format and the practical use of variables in different ways.
As in a standard CNC program, when writing a macro, there has to be a purpose - an objective. In
the examples, the single objective is to use macro features to calculate the Z-depth for a drill cut-
ting through a plate of a given thickness. Several versions of the program will show the continu-
ously improved progress in development and use of the many available programming tools.
Compare the differences between individual programs.

The first few examples will use local variables, later examples will use common variables.

Using Local Variables

A reminder - all local variables used by the program will be discarded when M30 or M99 is exe-
cuted, or when the RESET key at the control panel is pressed.

« Example 1

In the initial version, evaluation of the job finds that four items have to be dealt with:

(4 Drill diameter

(1 Plate thickness

(4 Tool point length

(1 Clearance for the drill penetration

In order to make the program flexible, choose the drill and the plate thickness as variable data,
then select defaults for the tool point length and the penetration clearance. To store the drill diam-
eter, variable #1 will be used, to store the plate thickness, variable #2 will be used. Since only
118° point angle drills will be used, the standard default constant of 0.3 is used to calculate the
tool point length (formula determining the constant is listed later in this section). The other default
in the program will be the clearance below the plate for the drill penetration. Selection of 1.5 mm
is reasonable. The first program with macro features uses a very simple and basic approach:

00011 (MAIN PROGRAM 1)

#1 = 15.0 (DRILL DIAMETER)

#2 = 13.0 (PLATE THICKNESS)

()
#3 = #1%0.3+#2+41.5 (Z-DEPTH CALCULATION - POSITIVE VALUE OF 19.0)
()
N1 G21

N2 G90 GO0 G54 X100.0 Y50.0 s800 MO3

N3 G43 Z5.0 HO1l MO8

N4 G99 G81 R2.5 z-#3 F150.0 (DISTANCE-TO-GO IS Z-21.5)
N5 G80 Z5.0 M09

N6 G28 X100.0 ¥50.0 z5.0 MO5

N7 M30

%

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

130 Chapter 9

Look at the program only as the objective states - was the objective achieved? The example
shows yes, it was. The total Z-axis tool travel will be Z-21.5 (this is indicated at the control as
Distance-To-Go). Remember, the 'distance to go' is measured from the start point (R-level) to the
Z-depth. What is the returned value of variable #3? Once the program is completed (M30 func-
tion), or the reset button is pressed, all local variables are cleared. The screen display of macro
variables will show no values. There are no variable data shown, because there are no variable
data stored - all were flushed out of the memory, because they were defined as local variables.

There is no need to keep a value already used in the memory, once the job is done. If the same
program is applied for a different drill diameter and/or plate thickness, just change the #1 and/or
#2 variables, and the new values of the Z-depth will be calculated automatically and correctly for
any 118° tool point angle (within the macro framework)!

There are other parts of the program that could benefit from variable data, but the focus of the
examples is on the Z-depth calculation only. As an improvement, for example, the spindle speed
and the feedrate would have to change with each drill diameter and a few other data as well.

&« Example 2

In the second version of the example, only a minor change will be made. Look at the calculation
of the Z-#3 in block N4 above? The calculation of variable #3 always produces a positive result,
but in the program, the Z-depth must be negative. By making two changes in the program, the re-
sult of the #3 calculation will be negative and a positive entry of Z#3 will be used in block N4:

00012 (MAIN PROGRAM 2)

#1 = 15.0 (DRILL DIAMETER)
#2 = 13.0 (PLATE THICKNESS)
()
#3 = -[#1*%0.3+#2+1.5] (2-DEPTH CALCULATION - NEGATIVE VALUE OF -19.0)

()
N1 G21

N2 G90 GO0 G54 X100.0 ¥Y50.0 s800 MO3

N3 G43 Z5.0 HO1l MO8

N4 G99 G81 R2.5 z#3 F150.0 (DISTANCE-TO-GO IS Z-21.5)
N5 G80 Z5.0 M09

N6 G28 X100.0 ¥50.0 z5.0 MO5

N7 M30

%

Which version is better? In this case, it is not a question of better or worse - it is a question of
personal preference. Many programmers would probably prefer the Example 1 (program O0011),
because it shows the negative value in block N4, where it logically belongs (at least in my opin-
ion). Based on the method of developing standard manual programs, it seems a better choice.

& Example 3

There is yet another way to get the negative result of the depth calculation - just redefine the
original definition of the #3 variable. Substitution (redefinition) will take the old value of a vari-
able and replaces it with the new value.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACRO FUNCTIONS 131

00013 (MAIN PROGRAM 3)

#1 = 15.0 (DRILL DIAMETER)

#2 = 13.0 (PLATE THICKNESS)

()
#3 = #1%0.3+#2+41.5 (Z-DEPTH CALCULATION - POSITIVE VALUE OF 19.0)
#3 = -#3 (POSITIVE #3 BECOMES NEGATIVE #3 OF -19.0)
()
N1 G21

N2 G90 GO0 G54 X100.0 Y50.0 s800 MO3

N3 G43 Z5.0 HO1l MO8

N4 G99 G81 R2.5 z#3 F150.0 (DISTANCE-TO-GO IS Z-21.5)
N5 G80 Z5.0 M09

N6 G28 X100.0 ¥50.0 z5.0 MO5

N7 M30

%

Even better, these examples could benefit from the ABS function and guarantee a negative
Z-depth in block N4, regardless of previous positive or negative input:

N4 G99 G81 R2.5 Z-[ABS[#3]] F150.0 (DISTANCE-TO-GO IS Z-21.5)

&« Example 4

In the fourth version, a bit more flexibility will be added to the macro program. So far, the tool
point length was based only on a 118° angle, and the penetration clearance was arbitrarily as-
signed the value of 1.5 mm. What if the tool angle is 135° or some other angle? What if the clear-
ance of 1.5 mm is too small or too large? These values can be defined as variables - they will add
flexibility to the program, with only a few more variables to fill.

00014 (MAIN PROGRAM 4)

#1 = 15.0 Drill diameter

#2 = 13.0 Plate thickness

#3 = 118.0 Drill point angle

#4 = 1.5 Penetration clearance added

Once the variables have been defined, they have to be used. In the example, the main goal is to
calculate the Z-depth, based on the input values (assignments). Since there is a constant mathemat-
ical relationship between the drill diameter and the drill point angle, it can be expressed in a well
known and standard machine shop formula:

P = Ex tan(90 —Aj
2 2

I where ...
P = Drill point length
D = Drill diameter
A = Drill point angle

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

132 Chapter 9

The formula may be nested in the macro, but nesting may not be easy to view, interpret, or
change, if necessary. Because it may be somewhat difficult to include the whole formula into the
macro right away, we choose a simpler method that segments (or splits) the variable input into
smaller portions, and makes it more manageable (and definitely much easier to read). (The Exam-
ple 5 shows nested version of the formula). The next version of the example shows you this better
way. We use variable #5 for the Z-depth calculation, and redefine it several times - all you need is
one calculation at a time.

00015 (MAIN PROGRAM 4)

#1 = 15.0 (DRILL DIAMETER - D IN THE FORMULA)

#2 = 13.0 (PLATE THICKNESS)

#3 = 118.0 (DRILL POINT ANGLE - A IN THE FORMULA)

#4 = 1.5 (PENETRATION CLEARANCE ADDED)

()
#5 = #3/2 (ONE HALF OF TOTAL DRILL POINT ANGLE)

#5 = 90-#5 (ANGLE TO BE CALCULATED)

#5 = TAN[#5] (TANGENT OF THE ANGLE TO BE CALCULATED)

#5 = #1/2*#5 (DRILL POINT LENGTH P FOR A GIVEN DRILL DIA)
#5 = #5+#2+#4 (PLATE THICKNESS AND CLEARANCE ADDED)

()
N1 G21

N2 G90 GO0 G54 X100.0 Y50.0 s800 MO3

N3 G43 Z5.0 HO1l MO8

N4 G99 G81 R2.5 z-[ABS[#5]] F150.0 (DISTANCE-TO-GO IS Z-21.5)
N5 G80 Z5.0 M09

N6 G28 X100.0 ¥50.0 z5.0 MO5

N7 M30

%

This programming method takes four arguments (inputs) rather than the original two, but can be
used with any drill diameter and with any penetration clearance amount. By redefining the vari-
able #5, the computer memory is managed in a more efficient way. There is no need for each
statement (calculation) to have its own variable, because there is no real benefit.

One interesting comment - the program comment in block is not true anymore - at least not ex-
actly. The expected distance-to-go because instead of using a rounded 0.3 constant, the calculation
uses the complete formula with trigonometric function:

#5 = #3/2 Returns 59.0

#5 = 90-#5 Returns 31.0

#5 = TAN[#5] Returns 0.600861

#5 = #1/2*45 Returns4.506455

#5 = #5+#2+#4 Returns 19.006455

The comment in block N4 should be changed as well (if necessary):

N4 G99 G81 R2.5 Z-[ABS[#5]] F150.0 Actual distance-to-go will be 21.506455

Practically, this is of little consequence, but macro programmer should pay attention to details.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACRO FUNCTIONS 133

« Example 5

The next improvement will improve the previous example even more and eliminate the multiple
definition of variable #5. Individual blocks of intermediate calculations are very useful to step
through the program and perhaps make it easier for general understanding and even debugging.
However, in most cases, a shorter program is preferred. Writing only a single definition of vari-
able #5 means combining - nesting - all individual calculations. This example shows how:

00016 (MAIN PROGRAM 5)

#1 = 15.0 (DRILL DIAMETER - D IN THE FORMULA)

#2 = 13.0 (PLATE THICKNESS)

#3 = 118.0 (DRILL POINT ANGLE - A IN THE FORMULA)

#4 = 1.5 (PENETRATION CLEARANCE ADDED)

()
#5 = #1/2*TAN[90-#3/2] +#4+4#2 (SINGLE FORMULA NESTED IN A BLOCK)
()
N1 G21

N2 G90 GO0 G54 X100.0 Y50.0 S800 MO3

N3 G43 25.0 HO1l MO8

N4 G99 G81 R2.5 Z-[ABS[#5]] F150.0 (DISTANCE-TO-GO IS Z-21.5)
N5 G80 Z5.0 M09

N6 G28 X100.0 Y50.0 25.0 MO5

N7 M30

%

&« Example 6

So far, all five examples used variable assignments internally, in the main program. This final
example will advance ahead another significant step, and defines the Z-depth as a true Fanuc Cus-
tom Macro. Macro has been defined as special a program that contains common but variable data.
In this case, the common data is the calculation of the Z-depth itself. Both, the main program and
the macro program will be needed. The main program, O0017 will be call macro 08005, con-
taining the depth calculation. Because the result - the returned value - calculated in the macro
08005 has to be transferred to the main program, where it is actually used, some stronger pro-
gramming tools will be needed. These tools involve the Common Variables (rather than just Local
Variables), and the example is completed in the next section.

Using Common Variables

The basic concept of common variables has been already introduced. Based on a dictionary def-
inition, the word 'common' means 'shared'. Common variables in a macro are shared by at least
one other program, and usually more than one. Common variables create a shared bond between
the main program, subprograms, and all macros that are to be connected by another program.

Variables designed as common are used to store program data. Within the group of common
variables, and depending on the type of the stored data, there are two mini-groups. One covers the
System Variables, the other covers the I/0 (Input/Output) Interface.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

134 Chapter 9

Variables that are allowed in the 'common' group, belong to the variables range of #100 to
#149 or, optionally, #100 to #199 - this group is called the 'non-holding' group, and #500 to
#599 or, optionally, #500 to #999 - this group is called the 'holding' group. The terms
non-holding and holding refer to the ability of the control system to keep the stored variable data
in its memory. The non-holding group is retained until the system is restarted, the holding group
is retained until removed by a program. Common variables are not cleared by M99 or M30 func-
tions. Study the same exercise - this version uses macro call and common variables.

& Example 5 Revisited

The main program O0017, is the one that calls the macro program O8005, and passes the re-
turned values of any define variable to the macro body. That way, the contents of macro program
will never change, only the variable data supplied to it by the main program (G65 macro call).

00017 (MAIN PROGRAM)

N1 G21

N2 G90 GO0 G54 X100.0 Y50.0 s800 MO3

N3 G43 z5.0 HO1 MO8

N4 G65 P8005 D15.0 T13.0 Al18.0 Cl1l.5 Macro call block with arguments
N5 G99 G81 R2.5 Z-[ABS[#100]] F150.0 Distance-to-go is Z-21.5

N6 G80 z5.0 MO9S

N7 G28 X100.0 ¥Y50.0 Z5.0 MO5

N8 M30

%

The associated macro O8005 is short and simple - it only contains the formula itself, this time
using the variable assignments matching those that are called by the G65 macro call:

08005 (MACRO FOR EXAMPLE 00017)
#100 = #7/2*TAN[90-#1/2]+#20+#3
M99

%

The formula built into the macro is identical to the formula used in previous examples. The only
items that change are the calling parameters - the input values - in the G65 block:

D=#7 =15.0, A =#1 = 118.0, T = #20 = 13.0, and C = #3 = 1.5

The advantage of this method is that macro program O8005 can be used for any job, providing
the definition of arguments is defined consistently. In the examples, a single objective has been
achieved by several methods, some very similar.

Speeds and Feeds Calculation

Another example of using common variables is for calculations of the spindle speed and the cut-
ting feedrate, using formulas. Formulas are used in macros quite often, because their input can
easily be replaced with variables. Based on standard machine shop formulas, many related values
can be calculated, using the macro programming tools.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACRO FUNCTIONS 135

¢ The spindle speed (r/min = rpm) formula - Metric:

m/min x 1000

r/min =
/ nxD

¢ The spindle speed (r/min) formula - English:

ft/min x 12

r/min =
nxD

& The metric feedrate (mm/min) formula:

mm/min = r/min x mm/tooth x N

¢ The English feedrate (IPM - in/min - inches per minute) formula:

in/min =r/min x in/tooth x N

1= where...
r/min = Revolutions per minute (spindle speed) - also 'rpm'
m/min or ft/min = Peripheral speed in meters or feet per minute
T = Constant pi (3.14159265359...)
D = Drill diameter (Metric or English)
mm/min = Millimeters per minute feedrate (Metric only)
mm/tooth or in/tooth = Chipload per cutting edge rating in mm/tooth or inches/tooth
N = Number of teeth in a cutter (number of cutting flutes)

« Example 7

00017 (MAIN PROGRAM)

N1 G21

N2 G65 P8006 D12.0 F50.0 CO0.15 T2 (MACRO CALL WITH DEFINITIONS)

N3 G90 GOO G54 X100.0 Y50.0 S#101 MO3 (SPINDLE SPEED CALCULATED BY MACRO)
N4 G43 Z5.0 HO1l MO8

N5 G99 G81 R2.5 2Z-19.0 F#102 (FEEDRATE CALCULATED BY MACRO)

N6 G80 z5.0 M09

N7 G28 zZ5.0 MO5

N8 MO01

08006 (MACRO FOR EXAMPLE 00017)

#101 = FIX[[#9*1000]/[3.141593*#7]] (SPINDLE SPEED CALCULATION)
#102 = #101*#3*#20 (FEEDRATE CALCULATION)

M99

%

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

136 Chapter 9

In the G65 macro call, the values that are relevant to the current programming job have to be
supplied to the macro. In the example, D12.0 definition means that the variable #7 will store the
value of 12.0 mm drill diameter, F50.0 means that the variable #9 will store 50 m/min peripheral
speed value, C0.15 means that the variable #3 will store 0.15 mm/rev chip load value, and T2
means that the variable #20 will store 2 cutting edges (flutes).

Notice the FIX function used for the r/min definition. If the formula is taken exactly, it will be
[#9*1000]/[3.141593*#7]

which is the same in a macro as

(50.0*1000) /(3.141593*12.0)

is on a calculator, and returns exactly
1326.291 r/min - revolutions per minute

The basic rules of CNC programming do not allow a decimal point in the spindle speed specifi-
cation. The integer of 1326 (used as S1326 in the program) is allowed, but a real number of
1326.291 is not. The macro FIX function will discard all the decimal places of the calculated
value, leaving only the integer. There will be no rounding, just the isolated integer value - the FIX
function strips the decimal values of a real number, leaving only the integer. In the case of the
spindle speed, the r/min will be accurate within one revolution.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

10 SYSTEM VARIABLES

The last group of variables is called the System Variables. The word ‘system’ in the description
of System Variables means the Control System variables. This group of variables is rather a spe-
cial group and cannot be compared to the variable types already discussed (local and common). It
is equally important in macros, but stands on its own.

In a macro program, this group is used to address the registers of the control memory (also
called addressable memory locations). In certain situations (not normally), some system variables
can also be used to change some infernal data (also called system data) stored within the CNC sys-
tem. For example, a work coordinate system (work offset) can be changed by manipulating the
system variables (changing one or more system variables). In a similar way, items like the tool
length compensation, macro alarms, parameter settings, parts count, modal values of the G-codes
(plus several additional codes), and many others, can be changed as well. System variables are ex-
tremely important for automated environment, such as probing, unmanned and agile manufactur-
ing, transfer systems, etc. There are many system variables available for each control system, and
there significant differences between various control systems (even within the various Fanuc mod-
els available). It is very unlikely that any programmer will ever need them all. The control refer-
ence manual will come very handy as a reference resource.

Identifying System Variables

When working with system variables, there are two very important features to be aware of right
from the beginning. Both relate to the way the system variables are identified by the control:

¢ System variables are numbered from #1000 and up (four or five digit numbers)

& System variables are not displayed on the control display screen

The numbering is fixed by Fanuc and cannot be changed. In this arbitrarily numbered system, a
reference book or manual is required for each control model in the shop. Fanuc provides such a
manual with the purchase of a particular control system. A great number of system variables are
identified in this handbook as well.

Since the system variables cannot be directly displayed on the screen (applies to a large number
of controls), there must be another way of finding what their current values are. The method used
is called a value transfer. In the program, or in MDI mode, the value of a system variable can be
transferred into a local or common variable. This chapter deals with this subject as well.

By organizing work, a tremendous step forward can be made. In the case of system variables,
the first significant step to their better organization is by grouping them.

137

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

138 Chapter 10

System Variables Groups

System variables are solely dependent on the CNC system. This is a very important and accu-
rate statement. It means that different Fanuc controls may take on different meanings of the con-
trol system variables. Programmers and service technicians have to know which model of the
control supports which features and the assignment of variables. The macro program you develop
may only be used for the selected control unit and, most likely, for the selected machine as well.

Over the years, Fanuc has brought many different control models to the industry. Only the most
common and the current ones are discussed here. They are listed with the FS (FS stand for Fanuc
System or Fanuc Series) abbreviation:

& FS-0, FS-10, FS-11, FS-15, FS-16, FS-18, FS-21 (plus variations)

Older controls are easy to figure out as well, but the control reference manual will be needed.
For example, Fanuc 3 is relatively similar to Fanuc 0. Fanuc 6 is the predecessor of Fanuc 10/11.
Keep in mind that the model numbers do not indicate the higher or lower level of the control fea-
tures. From the list, it is the Fanuc 15 that is classified as the top of the line, although its number is
smaller that some others. All controls are available in the milling version (FS-xxM or FS-xxMB),
for example FS-15M, and the turning version (FS-xxT), for example Fanuc 16T or 16TB. They
are also available for wire EDM, grinding, and several other machine types, but only milling and
turning are of an interest in this handbook.

Read and Write Variables

Variables contain data - data that change, or variable data. There are two types of variables in
terms of how the data is acquired. Some variables can be written to, meaning they can be changed
via a program or by MDI. This type of variables can also be read by the system, and stored values
processed by the system. System variables in this group are called Read and Write variables.

The other group type covers variables that can be processed, displayed on the screen using local
or common variables, but they cannot be changed by the user (CNC programmer, operator or ser-
vice technician). These are so called Read Only systems variables. These are the most common
system variables for typical work.

In the subsequent listings, the Read and Write variables are marked with an asterisk [*].

Displaying System Variables

Since not all Fanuc systems can display system variables directly, they must be displayed
through the local or common variables. This is called variable transfer, or variable redefinition, or
variable substitution. For example (Fanuc 15M):

#101 #5221 X-value of G54 work offset stored in #101 from #5221
#102 = #5222 Y-value of G54 work offset stored in #102 from #5222

The local or the common variable can be displayed on the control screen.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

SYSTEM VARIABLES

139

System Variables for Fanuc Series 0

#1000 through #1015, #1032 .
#1100 through #1115,#1132 .

#2000 through #2200 .

#2500
#2600
#2700
#2800

#2501
#2601
#2701
#2801

#2502
#2602
#2702
#2802

#2503
#2603
#2703
#2803

#2504
#2604
#2704
#2804

#2505
#2605
#2705
#2805

#2506
#2606
#2706
#2806

#3000
#3001
#3002 . . .
#3003, #3004
#3005
#3011
#3012
#3901
#3902

#4001 to #4022

#4102 to #4130

Dataln . . (DI)
Data Out . (DO)

Tool compensation values (tool offsets)

External work offset value along the X-axis
External work offset value along the Y-axis
External work offset value along the Z-axis
External work offset value along the 4th axis

G54 work offset value along the X-axis
G54 work offset value along the Y-axis
G54 work offset value along the Z-axis
G54 work offset value along the 4th axis

G55 work offset value along the X-axis
G55 work offset value along the Y-axis
G55 work offset value along the Z-axis
G55 work offset value along the 4th axis

G56 work offset value along the X-axis
G56 work offset value along the Y-axis
G56 work offset value along the Z-axis
G56 work offset value along the 4th axis

G57 work offset value along the X-axis
G57 work offset value along the Y-axis
G57 work offset value along the Z-axis
G57 work offset value along the 4th axis

Gb58 work offset value along the X-axis
G58 work offset value along the Y-axis
Gb58 work offset value along the Z-axis
G58 work offset value along the 4th axis

Gb59 work offset value along the X-axis
G59 work offset value along the Y-axis
G59 work offset value along the Z-axis
G59 work offset value along the 4th axis

User macro generated alarm

Clock 1 - unit 1 ms

Clock 2 - unit 1 hour

Cycle Operation Control

Setting

Clock information - Year, Month, Day
Clock Information - Hour, Minute, Second
Number of parts machined

Number of parts required

Modal Information Pre-reading block - G-code groups

Modal Information

Pre-reading block - B, D, F, H, M, N, O, S, T codes

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

140 Chapter 10

#5001 to #5004
#5021 to #5024
#5041 to #5046
#5061 to #5064
#5081 to #5086
#5101 to #5104

Block end position

Machine coordinates position
Work coordinates position

Skip signal position

Tool length compensation value
Servo deviation

Fanuc Model 0 Compared to Other Models

Tables in this chapter describe the various groupings of system variables for several Fanuc con-
trol models. Fanuc Model 0 (FS-0) is one of them, described above. In relation to the other con-
trols, FS-0 is the most modest control, and supports much smaller set of variables than the higher
level controls. This is particularly noticeable in the use of various system variables relative to tool
offsets, described in detail in the next chapter.

Always understand system variables for a particular control and machine unit
There is no guarantee of compatibility between different control or machine models

Most of the examples in this handbook are for the FS-15M and FS-16/18/21M controls and
their B-version, if available, as well as their lathe equivalents. These two control groups are the
most widely used models in machine shops using macros. In many ways, the models FS-10 and
FS-11 are very close, but expect many different reference numbers.

System Variables for Fanuc Series 10/11/15

#1000 through #1035. Dataln (DI -from PMC)

#1100 through #1135. Data Out (DO-toPMC) [*]
#2000 through #2999. . Tool compensation values (tool offsets) . . [¥]
#10001 through #13999. Additional tool offsets [¥]
#3000, #3006 User macro generated alarm or message . . [*]
#3001,#3002. Clock.1%
#3003,#3004. CycleOperationControl [*]
#3007 Mirrorimage

#3011, #3012 . Clock Information (time variables)

#3901, #3902 . Number of parts (parts count variables) . . [*]

#4001 to #4130 . Modal Information Pre-reading block

#4201 to #4330 . Modal Information Executing block

#5001 to #5006 .
#5021 to #5026 .

Block end position
Machine coordinates position

#5041 to #5046 .
#5061 to #5066 .
#5081 to #5086 .
#5101 to #5106 .

A ETGieer NOBob ks Pefie

Work coordinates position

Skip signal position

Tool length compensation value
Servo deviation

SYSTEM VARIABLES

FANUC CNC Custom Macros

141

#5201 to #5206 .
#5221 to #5226 .
#5241 to #5246 .
#5261 to #5266 .
#5281 to #5286 .
#5301 to #5306 .
#5321 to #5326 .

Work offset value (shift or common) or up to #5215 [*]

Work offset value G54 or up to #5235 . . . [*]
Work offset value G55 or up to #5255 . . . [*]
Work offset value G56 or up to #5275 . . . [*]
Work offset value G57 or up to #5295 . . . [*]
Work offset value G58 or up to #5315 . . . [*]
Work offset value G59 or up to #5335 . . . [*]

[*] marks system variables of the Read and Write type

#1000 through #1015.

#1032 .

#1100 through #1115.

#1132 .

#1133 .

#2001 through #2200.

#10001 through #10999.

#2001 through #2200.

#2201 through #2400.

#10001 through #10999.

#11001 through #11999.

#2001 through #2200.

#2201 through #2400.

#10001 through #10999.

System Variables for Fanuc Series 16/18/21

Data In DI Sending 16-bit signal from PMC to macro
(reading bit by bit)

Used for reading all 16-bits of a signal at one time

Data Out DO Sending 16-bit signal from
macro to PMC (writing bit by bit)

Used for writing all 16-bits of a signal
at one time to the PMC

Used for writing all 32-bits of a signal
at one time to the PMC - Values of -99999999 to
+99999999 may be used for #1133

Tool compensation values .
Memory Type A - Milling

(offsets 1-200)

Tool compensation values .
Memory Type A - Milling

(offsets 1-999)

Wear offset values . . . (offsets 1-200)
Memory Type B - Milling
Geometry offset values
Memory Type B - Milling

(offsets 1-200)

Wear offset values (offsets 1-999)

Memory Type B - Milling
Geometry offset values (offsets 1-999)
Memory Type B - Milling

Wear offset values of H-code (offsets 1-200)
Memory Type C - Milling
Geometry offset values of H-code . (offsets 1-200)
Memory Type C - Milling

Wear offset values of H-code (offsets 1-999)
Memory Type C - Milling

A ETGieer NOBob ks Pefie

142

FANUC CNC Custom Macros

Chapter 10

#11001 through #11999.

#12001 through #12999.

#13001 through #13999.

#2500 .
#2600 .
#2700 .
#2800 .

#2501 .
#2601 .
#2701 .
#2801 .

#2502 .
#2602 .
#2702 .
#2802 .

#2503 .
#2603 .
#2703 .
#2803 .

#2504 .
#2604 .
#2704 .
#2804 .

#2505 .
#2605 .
#2705 .
#2805 .

#2506 .
#2606 .
#2706 .
#2806 .

#3000 .
#3001 .
#3002 .
#3003 .
#3004 .
#3005

#3011 .
#3012 .
#3901 .
#3902 .

Geometry offset values of H-code . (offsets 1-999)
Memory Type C - Milling

Wear offset values of D-code . . . (offsets 1-999)
Memory Type C - Milling

Geometry offset values of D-code . (offsets 1-999)
Memory Type C - Milling

External work offset value along the X-axis
External work offset value along the Y-axis
External work offset value along the Z-axis
External work offset value along the 4th axis

G54 work offset value along the X-axis
G54 work offset value along the Y-axis
G54 work offset value along the Z-axis
G54 work offset value along the 4th axis

G55 work offset value along the X-axis
G55 work offset value along the Y-axis
G55 work offset value along the Z-axis
G55 work offset value along the 4th axis

G56 work offset value along the X-axis
Gb56 work offset value along the Y-axis
G56 work offset value along the Z-axis
G56 work offset value along the 4th axis

G57 work offset value along the X-axis
G57 work offset value along the Y-axis
G57 work offset value along the Z-axis
G57 work offset value along the 4th axis

Gb58 work offset value along the X-axis
Gb58 work offset value along the Y-axis
G58 work offset value along the Z-axis
G58 work offset value along the 4th axis

Gb59 work offset value along the X-axis
G59 work offset value along the Y-axis
G59 work offset value along the Z-axis
Gb59 work offset value along the 4th axis

User macro generated alarm

Clock 1 - unit 1 ms

Clock 2 - unit 1 hour

Control of single block, wait signal for FIN

Control of feedhold, feedrate override, exact stop check
Setting

Clock information - Year, Month, Day

Clock Information - Hour, Minute, Second

Number of parts machined

Number of parts required

A ETGieer NOBob ks Pefie

SYSTEM VARIABLES

FANUC CNC Custom Macros

143

#4001 to #4022 .

#4102 to #4130 .

#5001 to #5008 .
#5021 to #5028 .
#5041 to #5048 .
#5061 to #5068 .
#5081 to #5088 .
#5101 to #5108 .

#5201 to #5208 .
#5221 to #5228 .
#5241 to #5248 .
#5261 to #5268 .
#5281 to #5288 .
#5301 to #5308 .
#5321 to #5328 .

Modal Information
Pre-reading block - G-code groups

Modal Information

Pre-reading block - B, D, F, H, M, N, O, S, T codes

Block end position

Machine coordinates position

Work coordinates position (Absolute position)
Skip signal position

Tool length compensation value

Servo deviation

External work offset value (1st to 8th axis)
G54 work offset value (1st to 8th axis)
Gb5 work offset value (1st to 8th axis)
Gb56 work offset value (1st to 8th axis)
Gb57 work offset value (1st to 8th axis)
Gb58 work offset value (1st to 8th axis)
Gb9 work offset value (1st to 8th axis)

Variables in the range of #5201 and #5328 are optional variables for work offsets.

#7001 to #7008 .
#7021 to #7028 .
#7041 to #7048 .
#7061 to #7068 .
#7081 to #7088 .
#7101 to #7108 .
#7121 to #7128 .
#7141 to #7148 .
#7161 to #7168 .
#7181 to #7188 .
#7201 to #7208 .
#7221 to #7228 .
#7241 to #7248 .
#7261 to #7268 .
#7281 to #7288 .
#7301 to #7308 .
#7321 to #7328 .
#7341 to #7348 .
#7361 to #7368 .
#7381 to #7388 .
#7401 to #7408 .
#7421 to #7428 .
#7441 to #7448 .
#7461 to #7468 .
#7481 to #7488 .
#7501 to #7508 .
#7521 to #7528 .
#7541 to #7548 .
#7561 to #7568 .
#7581 to #7588 .
#7601 to #7608 .
#7621 to #7628 .
#7641 to #7648 .

Gb54.1 P1 additional work offset value (1st to 8th axis)

G54.1 P2 additional work offset value (1st to 8th axis)

Gb54.1 P3 additional work offset value (1st to 8th axis)

Gb54.1 P4 additional work offset value (1st to 8th axis)

Gb54.1 P5 additional work offset value (1st to 8th axis)

G54.1 P6 additional work offset value (1st to 8th axis)

Gb54.1 P7 additional work offset value (1st to 8th axis)

Gb54.1 P8 additional work offset value (1st to 8th axis)

G54.1 P9 additional work offset value (1st to 8th axis)

Gb54.1 P10 additional work offset value (1st to 8th axis)
Gb54.1 P11 additional work offset value (1st to 8th axis)
Gb54.1 P12 additional work offset value (1st to 8th axis)
G54.1 P13 additional work offset value (1st to 8th axis)
Gb54.1 P14 additional work offset value (1st to 8th axis)
Gb54.1 P15 additional work offset value (1st to 8th axis)
G54.1 P16 additional work offset value (1st to 8th axis)
Gb54.1 P17 additional work offset value (1st to 8th axis)
Gb54.1 P18 additional work offset value (1st to 8th axis)
Gb54.1 P19 additional work offset value (1st to 8th axis)
G54.1 P20 additional work offset value (1st to 8th axis)
Gb54.1 P21 additional work offset value (1st to 8th axis)
Gb4.1 P22 additional work offset value (1st to 8th axis)
G54.1 P23 additional work offset value (1st to 8th axis)
Gb54.1 P24 additional work offset value (1st to 8th axis)
Gb54.1 P25 additional work offset value (1st to 8th axis)
Gb54.1 P26 additional work offset value (1st to 8th axis)
Gb54.1 P27 additional work offset value (1st to 8th axis)
Gb54.1 P28 additional work offset value (1st to 8th axis)
Gb4.1 P29 additional work offset value (1st to 8th axis)
G54.1 P30 additional work offset value (1st to 8th axis)
Gb54.1 P31 additional work offset value (1st to 8th axis)
Gb54.1 P32 additional work offset value (1st to 8th axis)
G54.1 P33 additional work offset value (1st to 8th axis)

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

144 Chapter 10

#7661 to #7668 .
#7681 to #7688 .
#7701 to #7708 .
#7721 to #7728 .
#7741 to #7748 .
#7761 to #7768 .
#7781 to #7788 .
#7801 to #7808 .
#7821 to #7828 .
#7841 to #7848 .
#7861 to #7868 .
#7881 to #7888 .
#7901 to #7908 .
#7921 to #7928 .
#7941 to #7948 .

Gb54.1 P34 additional work offset value (1st to 8th axis)
G54.1 P35 additional work offset value (1st to 8th axis)
Gb54.1 P36 additional work offset value (1st to 8th axis)
Gb54.1 P37 additional work offset value (1st to 8th axis)
Gb54.1 P38 additional work offset value (1st to 8th axis)
Gb54.1 P39 additional work offset value (1st to 8th axis)
Gb54.1 P40 additional work offset value (1st to 8th axis)
G54.1 P41 additional work offset value (1st to 8th axis)
Gb54.1 P42 additional work offset value (1st to 8th axis)
Gb54.1 P43 additional work offset value (1st to 8th axis)
Gb54.1 P44 additional work offset value (1st to 8th axis)
G54.1 P45 additional work offset value (1st to 8th axis)
Gb54.1 P46 additional work offset value (1st to 8th axis)
Gb54.1 P47 additional work offset value (1st to 8th axis)
Gb54.1 P48 additional work offset value (1st to 8th axis)

Variables in the range of #7001 and #7948 are optional and are only available if additional
work offset system G54.1 P1 to G54.1 P48 is available (or G54 P1 to G54 P48).

Organization of System Variables

The preceding lists of many system variables have been provided for reference only. They look
boring - they are 'just' numbers. Yet, upon a more careful look, a certain pattern can be detected
in the method the variable are numbered (at least in most places). Many system variables are num-
bered logically within groups, even if the numbers are different for each control model.

For example, there is a noticeable numbering pattern in the section relating to the work offsets,
listed in the preceding definition. Here is the repeated listing:

#5201 to #5208 External work offset value (1st to 8th axis)
#5221 to #5228 Gb54 work offset value (1st to 8th axis)
#5241 to #5248 G55 work offset value (1st to 8th axis)
#5261 to #5268 Gb56 work offset value (1st to 8th axis)
#5281 to #5288 Gb57 work offset value (1st to 8th axis)
#5301 to #5308 Gb58 work offset value (1st to 8th axis)
#5321 to #5328 Gb9 work offset value (1st to 8th axis)

What is the pattern and - even more important - why is it significant? Each set of variables
(seven sets listed above) contains variable numbers that differ by the amount of rwenty. First set
starts with system variable #5201, the second set with system variable #5221, the third set with
system variable #5241, and so on. The seven sets cover one external work offset and six standard
work offsets, G54-G59. Additional sets (G54 .1 series), if available, use the same numbering
logic, but the variables numbering starts at #7001.

In macros, it is often important to address these system variables in an organized way, with
some logical and efficient approach. Taking advantage of the increments like 1 or 20, macro de-
velopment can use loops with counters, if required.

The following table conveys the same information as the seven lines above, perhaps even better,
but is without descriptions:

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

SYSTEM VARIABLES 145
Axis External G54 G55 G56 G57 G58 G59
1st=X #5201 #5221 #5241 #5261 #5281 #5301 #5321

2nd=Y #5202 #5222 #5242 #5262 #5282 #5302 #5322
drd=2 #5203 #5223 #5243 #5263 #5283 #5303 #5323

4th #5204 #5224 #5244 #5264 #5284 #5304 #5324
5th #5205 #5225 #5245 #5265 #5285 #5305 #5325
6th #5206 #5226 #5246 #5266 #5286 #5306 #5326
Tth #5207 #5227 #5247 #5267 #5287 #5307 #5327
8th #5208 #5228 #5248 #5268 #5288 #5308 #5328

No doubt, the table looks better organized than a plain list; it also is longer and does not contain
any descriptions. It does not matter which representation is better, this methodical numbering sys-
tem offers numerous benefits. It is not the cosmetics of the numbering system, it is a practically
oriented numbering system that just happens to look appealing as well. This numbering system is
suitable to use formulas in the macros, with variables, and allows calculation of the required ad-
dress number based on the number of another address.

Take, for example, the following situation. If the calculations are based on the system variable
#5201, all that is needed is a simple multiplication to get another coordinate system:

(d Through the macro, add 20 times 1 to get the X-value for G54
Through the macro, add 20 times 2 to get the X-value for G55
Through the macro, add 20 times 3 to get the X-value for G56
Through the macro, add 20 times 4 to get the X-value for G57
Through the macro, add 20 times 5 to get the X-value for G58
Through the macro, add 20 times 6 to get the X-value for G59

[I N N Ny

The value of 20 in this case is called the shift value. Of course, any other variable can be used as
the base variable for the calculations. The logic of this approach can be used with many calcula-
tions, using the built-in numbering method. Going a little step further, think about how to handle
the jump from one axis to another. Take it as a small challenge, but the next section will reveal the
process and explanation.

Resetting Program Zero

At least a small but quite practical application example is in place here. Its purpose is to illus-
trate the application of system variables for a desirable, yet simple process. The system variable
will be used in an actual macro program. Macro program development will be covered later, so a
small preview now may be useful then. The project is quite simple, and the small macro program
code can be very useful in everyday CNC machining. The macro example will only do one thing -
it will reset the current work offset setting to program zero at the current tool location, using the
topics discussed previously. This is known as zero shift or datum shift.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

146 Chapter 10

A typical application of this macro could be a situation, where the work offset is set to the cor-
ner of a part for the convenience during setup, then changed by the macro to the center of a circle
(bolt circle, for instance) for the convenience of programming. There are several other ways to do
it, for example use G52. Our job is to create a macro for the same purpose. In 08007, the added
comments describe what each block does. Check the system variables for Fanuc 15M earlier in
the chapter, so you know what they mean.

08007

(MACRO TO RESET PROGRAM ZERO AT CURRENT TOOL POSITION - VERSION 1)
N101 #1 = #4214 Store the current coordinate system number (54 to 59)
N102 #1 = #1-53 Store the current coordinate system group (I to 6)

N103 #1 = 20*#1 Calculate the shift value for the current group (based on 20)
N104 #1 = #1+5201 Identify the applicable variable number

N105 #[#1] = #5021 Store the current X-axis machine coordinate in new variable
N106 #[#1+1] = #5022 Store the current Y-axis machine coordinate in new variable
N107 M99 Exit macro

%

The block numbering in macro is used for reference only, and is not necessary. Local variable
#1 was used, but any other local variable could have been used instead, for example, #33. This is
just one version of the macro, and several others may be used. Improvements could include nested
definitions and perhaps a totally different approach. This example will be revisited later, as one of
the practical projects.

Special 'secret’ of macro O8007 is the block N102. Notice that an arbitrary value of 53 is sub-
tracted from the current value of variable #1. Since #1 stores the current work offset number (de-
fined in block N101), subtracting 53 from it will return a value of 1 for G54, 2 for G55, 3 for
G56, 4 for G57, 5 for G58, and 6 for G59. Block N103 will take this new value, and multiply it
by 20 - remember that 20 is the arbitrary shift amount for work offset system variables. In this
case, the shift of 20 is used for G54, 40 for G55, 60 for G56, 80 for G57, 100 for G58, and 120
for G59. Block N104 will add the number of 5201 to the shifted value, and becomes 5221 for
G54, 5241 for G55, 5261 for G56, 5281 for G57, 5301 for G58, and 5321 for G59. Block
N105 uses the current number and changes it into a genuine system variable number, for example
5221 will now be #5221, and so on. Since the system variable is on the left, it will written-to,
using the current machine coordinate for X (still in block N105). Block N106 adds the value of
one, and does the same think for the Y-axis.

Note what # [#1] means: take the returned value of variable #/ and convert it to a legitimate
number of a variable. For example,

#1 = 100 Value of 100 is stored in variable 1
#100 = 1200.0 Value of 1200.0 is stored in variable 100
#2 = #[#1] Definition is equivalent to #2=#100, so value of #2 is also 1200.0

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

11 TOOL OFFSET VARIABLES

The last chapter listed the system variables available for common - but different - Fanuc control
models. It focused to some extent on handling the work offsets, mainly the macro applications of
the standard set of G54 to G59 preparatory commands. In addition to the work offsets, there are
also offsets relating to the cutting tool and many system variables related to tool offsets - as an ad-
dition to the work offsets. In fact, there are so many of them, that a separate chapter is necessary.
The subject of tool offsets and the system variables that relate to them, continues the subject of
system variables discussed in the previous chapter, but in a different specific area.

System Variables and Tool Offsets

In macro programming generally, and in on-machine probing (in-process gauging) particularly,
the current values of various offsets change frequently, and have to be controlled automatically,
for the most reliable and repeatable results. This is done through various custom made macro pro-
grams and routines. Into this category belong two special groups of offsets (also called compensa-
tions) that relate to certain measurement values of cutting tools:

¢ Tool length offset ... and the related applicable G-codes:
G43, G44, and G49

¢ Cutter radius offset ... and the related applicable G-codes:
G40, G41, and G42

Values and settings of either group of offsets can be read directly by a macro program, or writ-
ten to by a macro, using the system variables of the Fanuc control system. Depending on the
Fanuc model, the usage of these variables may be somewhat complicated. In order to organize the
process, Fanuc distinguishes the tool offset application in a macro by three special groups, known
as the Tool Offset Memory Groups. Even if a CNC machine does not have a macro option installed
or active, it is a good idea to know what type of offset memory the machine has. This knowledge
is very important for standard CNC programming as well, and it is surprising how many CNC
programmers and operators do not have a clue of what type of the tool offset memory a particular
CNC machine actually has. Chapter 5 covered the subject of tool offset memory types in suffi-
cient depth. Focus of this chapter will be the relationship of these offsets to system variables.

The tool offset memory groups are related to the particular control model, and can be estab-
lished quite easily by looking at the control screen, and pressing the OFFSET button key on the
keyboard. The number of columns and the column headings (columns contents) will provide the
basic information. Do not expect to find the group itself listed or otherwise identified, however.
You have to actually know the exact differences between the three groups, and that is the subject
briefly revisited in this chapter.

147

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

148 Chapter 11

Tool Offset Memory Groups

The memory registers that store the tool offsets depend on the model of the control, and its type
(milling or turning). Programmers should always know which memory type is available on each
Fanuc control in the machine shop. There are three groups for the milling controls, and are identi-
fied by the capital letters A, B, and C. There are two groups for the turning controls, and are iden-
tified by the capital letters A, and B. An earlier Chapter 5 dealt with the subject of Data Setting - it
described the appearance of each offset group on the control display screen (CRT). Reviewing the
three main types used for the milling controls (usually only one type applies to lathes), will help to
consider them in the context of the system variables used in macros.

Tool Offset Memory - Type A

This lowest level group is also known as the shared offset group. It can be recognized it by its
simplicity. There is only a single column available in the control system to enter both the tool
length offset values and the cutter radius offset values. That means the tool offset for the length is
stored in the same registry area of the control as the tool offset for the radius. If a particular tool
requires both offsets in the same program, a distinction between them must include different offset
numbers. The same registry area shares both types of offsets. For example:

(TOOL 04 ACTIVE)

G43 Z2.0 HO4 Uses tool length offset 04 (HO04)

GO0l G41 X50.0 D34 Uses cutter radius offset 34 (D34)

On some machines, the D-offset cannot be used, and the H-offset must be used also for the cut-
ter radius:

(TOOL 04 ACTIVE)

G43 z22.0 HO4 Uses tool length offset 04 (HO4)

GO0l G41 X50 H34 Uses cutter radius offset 34 (H34)

The difference by 30 offset numbers is strictly optional, some programmers prefer 50. It only
suggests a possible choice that is both suitable and practical. Any other number that is convenient
is acceptable, as long as it is within the range of the available offset numbers. The more offsets are
available, the higher increment can be used. On the practical side, determine the increment not
only by the number of available offsets but also by their practical nature. For example, either the
tool length offset or the cutter radius offset may have several values for any single tool, in some
applications. Which one of them is more likely to have a multiple value in a practical application?
Certainly the cutter radius offset. That means allocating a larger range of offset numbers for the
radius offset than for the tool length offset.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

TOOL OFFSET VARIABLES 149

Tool Offset Memory - Type B

The next type of the tool offset memory type is the Memory Type B. It is very similar to the
Memory Type A, but on the control screen appears as two columns, not one. There is a separation
between the Geometry Offset and the Wear Offset. As in Memory Type A, there is no distinction
between the tool length offset number, and the tool radius offset number. The benefit of this mem-
ory type is that a nominal offset value (called the geometry offset) can be input and any adjust-
ments and fine tuning are done in a separate column, called the wear offset. Since the ‘fine-tuning’
of the offset values takes place in two separate offset registers, the nominal offset value (geome-
try) is not normally changed. The usage of the offsets in the CNC program is exactly the same as

in examples for Memory Type A:
(TOOL 04 ACTIVE)
G43 z2.0 HO4 Uses tool length offset 04 (HO4)

GO01 G41 X50.0 D34 Uses cutter radius offset 34 (D34)

On some machines, the D-offset cannot be used, and an H-offset must also be used for the cutter

radius:

(TOOL 04 ACTIVE)

G43 z2.0 HO4 Uses tool length offset 04 (HO4)

GOl G41 X50.0 H34 Uses cutter radius offset 34 (H34)

Note that the last program example is identical to the one before (for Type A). What is different
is the methods of inputting values to the offsets, and that happens on the machine, during the setup

process, not in the program.

Tool Offset Memory - Type C

The tool offset Memory Type C is the latest and the most flexible of the three. Like Memory
Type B, it distinguishes between the Geometry Offset and the Wear Offset. In addition, it separates
the Tool Length Offset and the Cutter Radius Offset, each with its own Geometry and Wear offsets.
Because each offset has its own registry area, the same offset number may be used for the H and

the D offsets:

(TOOL 04 ACTIVE)

G43 z2.0 HO4 Uses tool length offset 04 (HO4)

GOl G41 X50.0 D04 Uses cutter radius offset 04 (D04)

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

150 Chapter 11

In terms of convenience, the Type C is equally generous to the CNC programmer (same offsets
numbers can be used in the program for H and D addresses), and the CNC operators (distinct con-
trol over geometry and wear for both length and radius offsets).

Tool Offset Variables - Fanuc 0 Controls

Since Fanuc 0 (FS-0) is the most modest control in terms of features, therefore not the most
suitable control for serious and complex macro work, the details relating to system variables will
be short. On the CNC machining centers (or mills), Fanuc O uses only two columns for the tool
offset system variables - the offset number and the variable number.

Milling Control FS-OM

Typical number of available tool offsets is up to 200, and the input of tool offset related system
variables reflect that.

Tool Offset Variable
Number Number
1 #2001
2 #2002
3 #2003
4 #2004
5 #2005
6 #2006
7 #2007
8 #2008
9 #2009
10 #2010
11 #2011
12 #2012
199 #2199
200 #2200

Only one column of system variables is available on Fanuc 0 control models.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

TOOL OFFSET VARIABLES 151

Turning Control - FS-0T

Typical number of available tool offsets is 32, and the input of tool offset related system vari-
ables reflect that number.

Offset Tool Offset Tool Wear Tool Geometry
Registry Number Offset Value Offset Value
1 #2001 #2701
2 #2002 #2702
X-axis 3 #2003 #2703
32 #2032 #2732
1 #2101 #2801
2 #2102 #2802
Z-axis 3 #2103 #2803
32 #2132 #2832
1 #2201 #2901
2 #2202 #2902
Radius 3 #2203 #2903
32 #2232 #2932
1 #2301 #2301
2 #2302 #2302
Tool Tip 3 #2303 #2303
32 #2332 #2332

In the common Type B offset memory, four columns of system variables are required, 32 vari-
ables available for each column. Note that the Geometry and the Wear related variables are the
same for the Tool Tip setting value, because they cannot be different for each mode. If a tool tip
number 3, for example, is set to the Geometry offset, it will also appear as 3 in the Wear offset.
Change of one will force the change of the other.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

152 Chapter 11

Tool Offset Variables - FS 10/11/15/16/18/21 for Milling

Fanuc controls 10/11/15/16/18 for milling share quite a few system variables related to tool off-
sets and are listed under the same heading. Regardless of this general statement, always double
check for any latest changes in the Fanuc reference manual. Milling controls will be covered first.

The tool offset system variables are not only distinguished by the Memory Type (A, B, or C),
but also by the number of offsets actually available to the particular control system. Depending on
the options purchased, the distinction is between the number of offsets 200 or less, or over 200.
The following tables list the appropriate system variables available.

Assignments for 200 Offsets or Less - Memory Type A

The following table lists the system variables for 200 or fewer offsets, in memory Type A:

Offset Number Variable Number
1 #2001
2 #2002
3 #2003
4 #2004
5 #2005
6 #2006
7 #2007
8 #2008
9 #2009
10 #2010
11 #2011
12 #2012
198 #2198
199 #2199

200 #2200

A ETGieer NOBob ks Pefie

TOOL OFFSET VARIABLES

FANUC CNC Custom Macros

153

Assignments for 200 Offsets or Less - Memory Type B

The following table lists the system variables for 200 or fewer offsets, in memory Type B:

Geometry Wear

Offset Offset Offset
Number Variable Variable
Number Number

1 #2001 #2201

2 #2002 #2202

3 #2003 #2203

4 #2004 #2204

5 #2005 #2205

6 #2006 #2206

7 #2007 #2207

8 #2008 #2208

9 #2009 #2209

10 #2010 #2210

11 #2011 #2211

12 #2012 #2212

198 #2198 #2398

199 #2199 #2399

200 #2200 #2400

In the Type B tool offset memory, there still exists the sharing of the offsets between the tool
length and the tool radius entries, but the separation of Geometry offset and the Wear offset may
be very useful in many macro applications, mainly those that relate to the program controlled
changes of preset offset values. In such situations, the preset value will be stored in the Geometry
offset column (and will nor change), whereby the adjustments to that value (the required changes)
will be made into the Wear offset column. The preset offset values are typically measured
off-machine, using a special presetting equipment, and are quite common in large volume manu-
facturing, agile manufacturing, and in machine shops that use a large number of similar CNC ma-
chine tools or special features.

A ETGieer NOBob ks Pefie

154

FANUC CNC Custom Macros

Chapter 11

Assignments for 200 Offsets or Less - Memory Type C

The following table lists the system variables for 200 or fewer offsets, in offset memory Type C

- note the four columns of variables:

H-OFFSET D-OFFSET
Offset Geometry Wear Geometry Wear
Number Offset Offset Offset Offset
Variable Variable Variable Variable
Number Number Number Number

1 #2001 #2201 #2401 #2601

2 #2002 #2202 #2402 #2602

3 #2003 #2203 #2403 #2603

4 #2004 #2204 #2404 #2604

5 #2005 #2205 #2405 #2605

6 #2006 #2206 #2406 #2606

7 #2007 #2207 #2407 #2607

8 #2008 #2208 #2408 #2608

9 #2009 #2209 #2409 #2609
10 #2010 #2210 #2410 #2610
11 #2011 #2211 #2411 #2611
12 #2012 #2212 #2412 #2612
198 #2198 #2398 #2598 #2798
199 #2199 #2399 #2599 #2799
200 #2200 #2400 #2600 #2800

The benefits of the Type C tool offset memory are the same as those for the Type B, but the addi-
tional control of the tool length and the tool radius listed separately, brings a lot of convenience
and flexibility to the CNC and macro programming.

As was the case for work offset related system variables, note the same logical identification
and numbering of variables for tool length and radius.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

TOOL OFFSET VARIABLES

155

Assignments for More than 200 Offsets - Memory Type A

The following table lists the system variables for controls that have more than 200 tool offsets

available, in memory Type A:

Offset Variable
Number Number
1 #10001
2 #10002
3 #10003
4 #10004
5 #10005
6 #10006
7 #10007
8 #10008
9 #10009
10 #10010
11 #10011
12 #10012
997 #10997
998 #10998
999 #10999

The offsets listed in the above table are the same in principle as those used in applications for the
Assignments for 200 Offsets or Less - Memory Type A, listed earlier in this chapter. The only dif-
ference is the much greater number of offsets is available to the programmer and operator. The
large number of offsets usually appears on large CNC machines, and/or CNC machines that have

an unusually large number of tools that can be stored and registered.

By the minimum number of 200, it is safe to assume that machines having over 200 tools would

also use this group of tool offset system variables.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

156 Chapter 11

Assignments for More Than 200 Offsets - Memory Type B

The following table lists system variables for controls that have more than 200 tool offsets avail-
able, in memory Type B:

Geometry Wear

Offset Offset Offset
Number Variable Variable
Number Number

1 #10001 #11001

2 #10002 #11002

3 #10003 #11003

4 #10004 #11004

5 #10005 #11005

6 #10006 #11006

7 #10007 #11007

8 #10008 #11008

9 #10009 #11009
10 #10010 #11010
11 #10011 #11011
12 #10012 #11012
997 #10997 #11997
998 #10998 #11998
999 #10999 #11999

The tool offsets listed in the table above are used for the same applications as those listed in As-
signments for 200 Offsets or Less - Memory Type B, listed earlier in this chapter - only a greater
number of offsets is available.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

TOOL OFFSET VARIABLES

Assignments for More than 200 Offsets - Memory Type C

The following table lists system variables for controls that have more than 200 tool offsets avail-

able, in memory Type C:

H-OFFSET D-OFFSET
Offset Geometry Wear Geometry Wear
Number Offset Offset Offset Offset
Variable Variable Variable Variable
Number Number Number Number
1 #10001 #11001 #12001 #13001
2 #10002 #11002 #12002 #13002
3 #10003 #11003 #12003 #13003
4 #10004 #11004 #12004 #13004
5 #10005 #11005 #12005 #13005
6 #10006 #11006 #12006 #13006
7 #10007 #11007 #12007 #13007
8 #10008 #11008 #12008 #13008
9 #10009 #11009 #12009 #13009
10 #10010 #11010 #12010 #13010
11 #10011 #11011 #12011 #13011
12 #10012 #11012 #12012 #13012
997 #10997 #11997 #12997 #13997
998 #10998 #11998 #12998 #13998
999 #10999 #11999 #12999 #13999

The offsets are used the same as applications for Assignments for 200 Offsets or Less - Memory
Type C, listed earlier in this chapter - only a greater number of offsets is available.

This and all previous tables for milling provide a good resource of system variables for several
models of Fanuc controls for milling. The tables that follow will provide similar resources for
turning controls.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

158 Chapter 11

Tool Offset Variables - FS 10/11/15/16/18/21 for Turning

Fanuc controls FS-10, FS-11, FS-15, FS-16, FS-18, and FS-21 for turning also share quite a
few system variables related to tool offsets, and are listed under the same heading. Regardless of
this, always double check for any latest changes in the Fanuc reference manual. The turning con-
trols will be described next.

The tool offset system variables for lathe controls are not only distinguished by the offset Mem-
ory Type (A or B), but also by the number of offsets actually available to the particular control
system. Depending on the options purchased, the distinction is between the total number of offsets
64 or less, or over 64. The tables in this section list the appropriate system variables available.

Tool Setting

This particular section does not really belong to the chapter dealing with tool offsets, but it is in-
cluded here as a reminder of the tool offsets used in programming of a typical CNC lathe.

In a typical program for a CNC lathe, the cutting tool is called with the T-address, followed by a
four digit number, for example TO101. There is no MO6 function for an automatic tool change on
the lathe, the T-address does the tool change (tool indexing) as well as setting the offset values.
The four digit number is, in fact, ftwo pairs of two digit numbers. The first pair always calls the
tool number station on the turret, the second pair is the offset number. So T0O101 means tool 1,
offset 1. With memory Type A, there is only a single set of variables, and they refer to the Wear
offset only. There is no Geometry offset in Type A. In the program, it could be the G50 command
that sets the geometry offset (G50 on lathes is equivalent to G92 on mills). Since this method of
setting is today considered obsolete, it is the Type B that is more common and popular, using the
Geometry and the Wear offsets. In this case, the first pair of digits in T0101 means selection of the
tool station number 1 on the turret (including the tool change) and the Geometry offset number, in
this example, also 1. The second pair is strictly assigned to the Wear offset and does not have to be
the same as the Geometry offset, although often is.

Although there are CNC lathe operators who totally ignore the Geometry/Wear offset distinc-
tion in the control and use only the Geometry offset, it is definitely not the recommended ap-
proach, definitely for macro programs. For example, if the measured Geometry offset entry for
T0101 is Z-375.0 and the Wear offset for the same tool is Z1.5, it is exactly the same as having
the Geometry offset set to Z-373.5, and the Wear offset set to Z0.0. Not the right approach, not
the recommended approach, but it does work anyway.

The reason it is preferable to keep the Geometry offset unchanged and manipulate the Wear off-
set only, is because the Geometry offset represents a nominal, or original, given, or preset offset
measurement. It may come from the operator’s on-the-machine measurement, or from an external
tool presetter. This approach also allows for an easier control in situations where more than one
Wear offset is required for the same tool, which is a very powerful technique for maintaining tight
tolerances. Managing both offset types properly will help in preparation of quality macro pro-
grams for CNC lathes.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

TOOL OFFSET VARIABLES 159

Assignments for 64 Offsets or Less - Memory Type A

The offset memory Type A is not found very often in machine shops anymore. The following
reference table lists system variables for 64 or fewer offsets, in memory Type A.

The listing is equivalent to the Wear offset listing only:

Offset Tool Offset Tool Offset
Registry Number Value
1 #2001
2 #2002
X-axis 3 #2003
64 #2064
1 #2101
2 #2102
Z-axis 3 #2103
64 #2164
1 #2201
2 #2202
Radius 3 #2203
64 #2264
1 #2301
2 #2302
Tool Tip 3 #2303
64 #2364

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

160 Chapter 11

Assignments for 64 Offsets or Less - Memory Type B

The offset memory Type B is quite common, and is found on many Fanuc lathe controls. It sup-
ports up to 64 tool offsets, more than enough for the majority of lathe applications.

The following reference table lists system variables for 64 or fewer offsets, in memory Type B:

Offset Tool Offset Tool Wear Tool Geometry
Registry Number Offset Value Offset Value
1 #2001 #2701
2 #2002 #2702
X-axis 3 #2003 #2703
64 #2064 #2764
1 #2101 #2801
2 #2102 #2802
Z-axis 3 #2103 #2803
64 #2164 #2864
1 #2201 #2901
2 #2202 #2902
Radius 3 #2203 #2903
64 #2264 #2964
1 #2301 #2301
2 #2302 #2302
Tool Tip 3 #2303 #2303
64 #2364 #2364

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

TOOL OFFSET VARIABLES 161

Assignments for More than 64 Offsets - Memory Type A

The offset memory Type A is not found very often in machine shops anymore, and with more
than 64 offsets it is even more rare. The following reference table lists system variables for more
than 64 offsets (160 listed - other number is also possible), in memory Type A.

The listing is equivalent to the Wear offset listing only:

Offset Tool Offset Tool Offset
Registry Number Value
1 #10001
2 #10002
X-axis 3 #10003
160 #10160
1 #11001
2 #11002
Z-axis 3 #11003
160 #11160
1 #12001
2 #12002
Radius 3 #12003
160 #12160
1 #13001
2 #13002
Tool Tip 3 #13003
160 #13160

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

162 Chapter 11

Assignments for More than 64 Offsets - Memory Type B

The offset memory Type B for more than 64 offsets represents quite a modern application, but it
is not too common. It supports over 64 tool offsets (160 listed - other number is also possible),
more than enough for some very complex lathe applications.

The following reference table lists system variables for more than 64 offsets in memory Type B:

Offset Tool Offset Tool Wear Tool Geometry
Registry Number Offset Value Offset Value

1 #15001 #10001
2 #15002 #10002
X-axis 3 #15003 #10003
160 #15160 #10160
1 #16001 #11001
2 #16002 #11002
Z-axis 3 #16003 #11003
160 #16160 #11160
1 #17001 #12001
2 #17002 #12002
Radius 3 #17003 #12003
160 #17160 #12160
1 #13001 #13001
2 #13002 #13002
Tool Tip 3 #13003 #13003
160 #13160 #13160

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

12 MODAL DATA

One of the most important practical examples of using system variables in a macro program
deals with the subject of modal data. All basic CNC programming courses teach that the majority
of data in a CNC program is modal. The word modal is a word based on the Latin word modus,
which means manner. In English, we often use the words mode, style, form, etc., to describe such
a condition. When the same meaning is applied to the CNC modal word, for example a feedrate
word F250.0, it means the specified feedrate has the same form, same style, same mode - it means
that it does not change, or that it is modal, until another feedrate word replaces it. The same logic
applies to many other CNC program statements (words), such as the spindle speed S, offsets H
and D, and many others, including most of the G-codes and the M-codes. Of course, all axis data
is modal as well (XYZ positions).

In this chapter, the emphasis will be placed on the importance of program modal values that ex-
ist before the custom macro is called, either from the main program, or from another subprogram.
The emphasis will also be at how a macro can store the existing modal values, change them tem-
porarily, and restore the original ones later, when required.

Working with modal commands in macros is not difficult, but care is needed to avoid problems.

System Variables for Modal Commands

The 4000 series of system variables (applicable to FS-0/10/11/15/16/18/21) covers the utiliza-
tion of modal commands within a macro. In this 4000 series, there are two groups of system vari-
ables, based on the control model:

Fanuc 0/16/18/21 Modal Information
These control models use a set of two 4000 series variables:

#4001 to #4022 Modal Information (G-code groups)

#4102 to #4130 Modal Information (B, D, F, H M, N, O, S, and T codes)

Fanuc 10/11/15 Modal Information

These control models also use a set of two 4000 series variables, but with a wider range:

#4001 to #4130 Modal Information (Preceding Block)

#4201 to #4320 Modal Information (Executing Block)

163

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

164 Chapter 12

Preceding and Executing Blocks

The purpose of the 4000 series of system variables is to provide the CNC macro programmer
with modal information that is current at any given time. There are two groups of information
available, the preceding block, and the executing block.

¢ Preceding Block

In this group is the modal information that is already active
This block is also called the pre-reading block

¢ Executing Block

In this group is the modal information that will become active
when the current block is being executed

Note that the Executing Block is not available
on Fanuc models FS-0, FS-16, FS-18 and FS-21

Modal G-codes

Apart from axis commands, of all the remaining modal commands, the G-codes are the most
prominent and most commonly used in macros. For all Fanuc controls, the first system variable is
#4001, where the last digit (1) means modal G-code Group 01, #4002 refers to the G-code
Group 2, and so on. Group 00 is not supported, because the 4000 series of system variables serves
the modal information only, and G-codes in the Group 00 are non-modal. For the Fanuc
0/16/18/21 controls, the status of various modal G-codes is always stored in system variables
within the #4001-#4022 range, and the other codes within the range of #4102-#4130. All
these variables are modal information of the preceding block. For the Fanuc 10/11/15 controls,
the status of modal system variables is divided between the preceding block (system variables
within the #4001-#4130 range), and the executing block (system variables within the
#4201-#4330 range).

Within either range of variables, the current value of the G-codes of all modal groups can be
saved into a local or a common macro variable, typically before the G-code is changed in the
macro. The main purpose of the saving the current modal G-code(-s) is the safety being built into
the macro program, but also the effort of maintaining professional programming environment.
For example, if the work offset G56 is used in the macro, and no action is taken, the G56 will be-
come the current coordinate system after the macro is completed, for any program that is loaded
after. Such a situation may be very destructive, if - for instance - the flow of the main program ex-
ecution depends on the G54 work offset. A professional programmer always saves the current
modal G-values within the macro, then changes the values that need to be used in the macro body.
The new values can be used freely, as needed, as many times as needed, within the macro, while
the macro is active. Finally, before the macro exits, the original values used in the main program
or another macro are restored and applied for the subsequent program flow.

A ETGieer NOBob ks Pefie

MODAL DATA

FANUC CNC Custom Macros

165

Fanuc 0/16/18/21

Typical listing of G-codes (preparatory commands) modal information for the lower level CNC
controls (preceding block only - executing block is not available):

\?zrsi:\?)n G-code G-code
Number Group Commands

#4001 01 G00 G01 G02 G03 G33 Note: G31 belongs to Group 00

#4002 02 G17 G18 G19

#4003 03 G90 G91

#4004 04 G22 G23

#4005 05 G93 G94 G95

#4006 06 G20 G21

#4007 07 G40 G41 G42

#4008 08 G43 G44 G45

#4009 09 G73 G74 G76 G80 G81 G82 G83 G84 G35 G86 G387 G88 G89

#4010 10 G98 G99

#4011 11 G50 G51

#4012 12 G65 G66 G67

#4013 13 G96 G97

#4014 14 G54 G55 G56 G57 G58 G59

#4015 15 G61 G62 G63 G64

#4016 16 G68 G69

#4017 17 G15G16

#4018 18 N/A

#4019 19 G40.1 G41.1 G421

#4020 20 N/A to FS-M and FS-T controls

#4021 21 N/A

#4022 22 G50.1 G51.1

For example, when the macro program contains expression #1=#4001, and the variable is
processed, the returned value stored in #1 may be 0, 1, 2, 3, or 33, depending on the active

G-code in Group 01.

A ETGieer NOBob ks Pefie

166

FANUC CNC Custom Macros

Chapter 12

Fanuc 10/11/15

Typical listing of G-codes (preparatory commands) modal information for the higher level CNC

control systems:

_ System
" Varl.able Number. %:ooud: G-code Commands
receding | Executing
Block Block
#4001 #4201 01 G00 G01 G02 G03 G33 Note: G31 belongs to Group 00
#4002 #4202 02 G17 G18 G19
#4003 #4203 03 G90 G91
#4004 #4204 04 G22 G23
#4005 #4205 05 G93 G94 G95
#4006 #4206 06 G20 G21
#4007 #4207 07 G40 G41 G42
#4008 #4208 08 G43 G44 G45
#4009)\ #4209 09 380 1 G2 G83 G4 G85 G86 GB7 G55 GB9
#4010 #4210 10 G98 G99
#4011 #4211 11 G50 G51
#4012 #4212 12 G65 G66 G67
#4013 #4213 13 G96 G97
#4014 #4214 14 G54 G55 G56 G57 G58 G59
#4015 #4215 15 G61 G62 G63 G64
#4016 #4216 16 G68 G69
#4017 #4217 17 G15G16
#4018 #4218 18 G50.1 G51.1
#4019 #4219 19 G40.1 G41.1 G421
#4020 #4220 20 N/Ato FS-M and FS-T controls
#4021 #4221 21 N/A
#4022 #4222 22 N/A

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MODAL DATA 167

Saving and Restoring Data

The two of the most elementary programming rules are logical approach and programming
neatness. This handbook tries to follow these rule diligently, because they help in making a high
quality macro program. The goal is a CNC program or a macro that is written in a logical manner,
is well organized, follows operational steps in a methodical way, does not take anything for
granted, and, yes - is neat and elegant. The result is a program that is much easier to interpret,
document, and change, if necessary, even by a relative beginner in macro development. There are
two methods applied in macro programming that belong to this category.

Saving Modal Data

To save (store) the current value of a G-code (or other modal codes), is to preserve them for
later use - or rather re-use. The current value is stored into a variable and retrieved to restore the
original setting. In a typical macro, there will be many G-codes used, most of them modal. This
programming convenience also presents a potential problems. When a macro exits, the modal
G-codes used by the macro will still be in effect. That creates a very disorganized way of macro
program development, and can literally be a cause of many serious and hard to find problems. Al-
though any modal G-code groups can be saved (and eventually restored), only two or three groups
are commonly saved and replaced in most macros (add others, if needed):

d G-code Group 01 Motion Commands
Rapid, Linear, Circular G00, GOI1, GO2, GO3, G33

1 G-code Group 03 Dimensioning Mode
Absolute or Incremental mode G90 or G91

1 G-code Group 06 Measuring Units
Metric or English G21 or G20

Typical method of saving the current G-code mode is to assign the selected system variable into
a local variable. A common variable may also be used, in some very special applications. Here is
an example that stores the current mode of Group 01 (motion commands), and the current mode
of dimensioning from Group 03:

#31 = #4201 Store the current motion command mode Group 01 (GO0, GO1, G02, GO3 or G33)
#32 = #4203 Store the current dimensioning mode Group 03 (G90 or G91)
#33 = #4206 Store the current units mode Group 06 (G20 or G21)

Note that the last two digits of the system variable match the modal G-code Group number. This
is no coincidence. Such logical numbering offers an easy way of remembering. It can also be ap-
plied within a macro program in some ingenious way, to take advantage of it. When a macro is
called, any current modal command should always be registered at the beginning of the macro, if
that is not the case, then definitely before any changes are made within the macro.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

168 Chapter 12

Restoring Modal Data

Since the original G-code(-s) have been stored for the single reason of restoring them later, they
have to restored before the macro ends, typically at the end, just before the M99 function. Using
two system variables introduced in the previous example, here is a schematic layout of a macro
program structure, showing both the storage and the restoration of two modal values:

00018 (MACRO MODAL VALUES)
#31 = #4201 Store the current motion command
#32 #4203 Store the current dimensioning mode

G90 GOO G54 X150.0 Y75.0
< ... macro processing ... >

G#31 G#32 Restore both previously saved modes
M99
%

In the example segment, the variables #31 and #32 store the current values of the motion and
dimensioning modes, at the very beginning of the macro. The macro then proceeds with its own
definitions, G-code changes, and so on, and before the macro end (before M99), the original val-
ues, the previously stored values, are retrieved to become modal after the macro exits. Since both
of the previously stored values represent modal commands, the programming returns from the
macro to the same environment that existed before the macro was called. Logical method of num-
bering system variables will be also applied to the other modal codes.

Other Modal Functions

In addition to the modal G-codes, there are additional eleven modal codes used in typical macro
programming. Just like the G-codes, in a macro calculation (or a formula), these program codes
cannot be programmed to the left side of the equal sign, which means they cannot be assigned
value through the program. This is similar to the concept of ‘read-only’ and the ‘read-and-write’
type of variables in many general commercial programming languages, covered in the last chap-
ter. The listing of the 'other' eleven modal addresses that can be used in macro programming, is
presented here:

B DEFHMNDMNOSTP

These modal codes are in addition to the modal G-codes. On the next two pages are the listings
of the system variables relating to the 'other' modal addresses, for the two common types of
Fanuc controls. Observe the method of how these variables are numbered, again, there is a logical
method to it, and a little different one from the one used for modal G-codes. Also note the last two
digits of each system variable number. They correspond to the Local Variables Assignment List 1.
For example, the letter B is assigned to the local variable #2, hence the #4102 system variable,
the letter D is assigned to the local variable #7, hence the #4107 system variable, and so on.
Very valuable observation that can come handy.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MODAL DATA 169

Fanuc 0/16/18/21

As in the table for the modal G-codes listed earlier, the lower level controls use only system
variables applying to the preceding block. The system variables related to the executing block are
not available for this group of Fanuc controls (FS-0/16/18/21).

The following table shows the other modal information (eleven common addresses) frequently
used in a macro program with their corresponding system variables.

\?z;;i';l Program Address
Number (Code Letter)

#4102 B-code - indexing axis position

#4107 D-code - cutter radius offset number

#4108 E-code - feedrate value (if available)

#4109 F-code - feedrate value

#4111 H-code - tool length offset number

#4113 M-code - miscellaneous function

#4114 N-code - sequence number

#4115 O-code - program number

#4119 S-code - spindle speed value

#4120 T-code - tool number

#4130 P-code - additional work offset number

As the table illustrates, the only exception in the table is the #4130 variable - it has no corre-
sponding value in the Assignment List 1 for local variables. It was added by Fanuc later, when the
CNC technology advanced, to accommodate the extended work offset set, also known as the addi-
tional work offsets - G54.1 P1 to G54.1 P48. Variables that would 'fit naturally' in the table,
but are missing, for example #4118, are quite legitimate to use, providing they are supported by
the control system for the particular CNC machine tool (not exactly a likely scenario).

There are two system variable numbers that may seem out of order - they are #4114 (the letter
N, the address for the sequence numbers), and #4115 (the letter O, the address for the program
number). In the Assignment List 1, there are no #14 and #15 local variables listed. These assign-
ments are physically excluded in the list, but they are implied by their ‘non-presence’.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

170

Chapter 12

Fanuc 10/11/15

The listing of system variables for the higher group of Fanuc controls uses both sets of variables

- for the preceding block, and for the executing block.

System

Variable Number Program Address
Preceding | Executing (Code Letter)

Block Block

#4102 #4302 B-code - indexing axis position

#4107 #4307 D-code - cutter radius offset number

#4108 #4308 E-code - feedrate value (if available)

#4109 #4309 F-code - feedrate value

#4111 #4311 H-code - tool length offset number

#4113 #4313 M-code - miscellaneous function

#4114 #4314 N-code - sequence number

#4115 #4315 O-code - program number

#4119 #4319 S-code - spindle speed value

#4120 #4320 T-code - tool number

#4130 #4330 P-code - Additional work offset number

One observation that may be valuable from this chapter relates to the list. It is not what is in-
cluded, but what is missing. Modal commands used in the macro programming have been dis-
cussed extensively, along with the related system variables. Another subject discussed was the
major group of the modal G-code addresses, and eleven other modal addresses. What is missing?

What is missing are all system variables that have something to do with a fool position, such as
endpoint coordinates in a block, work coordinates, machine coordinates, various tool offset posi-
tions, coordinates related to the skip function, and so on - even deviation amount of the servo po-

sition, etc.

In the chapters that follow this one, more system variables will be covered, most listed earlier in
a descriptive form. They include those related to alarms, timers, and various axis position infor-
mation. The next chapter covers another part of the most important macro programming tools -

conditional testing, branching and looping.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

13 BRANCHES AND LOOPS

About half way through the handbook, now comes a real powerhouse of macros. At this level of
macro development, strong basic knowledge of macro command structure, offsets, memories, as
well as understanding variables, etc., is essential. A variable is assigned a value, macro is pro-
cessed with that value in effect, macro exits. This straightforward approach is convenient, and
very common, but it cannot and does not stand alone. It needs some additional forms of data ma-
nipulation, forms based on some kind of decision making process.

Decision Making in Macros

The structure of a typical Fanuc macro program is based on the oldest and simplest of all com-
puter languages - Basic™. The Basic language proved to be simple, yet powerful, language for its
time. Although the Basic language in its original form is now a history, many of its rules and
structural forms still do exist. Basic language has developed into the current Visual Basic, very
modern, and structured, high level language. One of the remnants of the old Basic is the function
GOTOn, and GOSUB, both considered today a very poor way of language based program struc-
ture. However, the other branching functions (IF, IF-THEN, and WHILE) are available to con-
trol the flow of the macro program.

In either form, the decision is always based on the result of a given condition, or given situa-
tion. Depending on this result, at least two other options must be available for further consider-
ations. As an example, the everyday English equivalent of - “If I have money, I will buy a car.”
has two parts. The condition here is 'if I have money' - 'to have money'. There are two logical out-
comes - they are 'I will buy a car' and 'I will not buy a car’', one or the other, but never both. “If 1
have money, I will buy a car, but I do not have money, so I will not buy a car.” Simple logic, and
very powerful when applied to macros.

The simplicity of the above example is very strong when transferred into the realm of a macro
programming. Of course, the macro conditions and macro options will always be different, but
the logic, the evaluation, the thinking process, and the decision will not.

For example, one objective of a macro could be to check if the cutting tool travels within the
limits of the machine. For each axis to be tested, a very specific condition will be created - “If the
length of travel is greater than the given distance, then ...”, and the macro will have to contain the
decision in it own format. If the condition specified is frue, the CNC operator may be notified
with an alarm message or at least a program comment. If the condition is false (not true), the
macro will proceed with the program flow without interruption. The operator may not even be
aware of the evaluation and decision taking place. This chapter covers various aspects of condi-
tional testing, branching, and looping, depending on the complexity of the given condition and the
purpose of such evaluation.

The first and the single major function in all the above examples is the IF function.

171

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

172 Chapter 13

IF Function

IF

The IF function has several names - it is called the decision function, the divergence function,
or most commonly, the conditional function. The format of th IF function is:

IF [CONDITION IS TRUE] GOTOn

where n is the block number to branch to, but only if the evaluated condition (the returned
value) is TRUE. If the condition is true, all statements between the IF-block and GOTOn-block
will be bypassed. If the evaluated condition is not TRUE, it is FALSE, and the program will con-
tinue processing the next block following the block containing the IF function. We can schemati-
cally represent the last example in a simple flow chart in Figure 19.

Figure19

Schematic flowchart representation
of the IF conditional branching

IS
TRAVEL
TOO

LONG
7?7

YES ISSUE ALARM

RUN
PROGRAM

The flowchart only shows the decision making and the results, not any complete program. The
diagonal box identifies the condition to be evaluated (for example, machine travel limits), and the
two rectangular boxes identify two - and only two - possible outcomes (YES or NO). Each out-
come results in an action to be taken:

(1 Ifthe travel IS too long, generate alarm condition and stop processing
(d If the travel IS NOT too long, run the rest of the program normally

The IF function is one of the macro statements that control the order of program processing.

Conditional Branching

Branching from one block of the program to another block of the same program is unique to
macros - it always means bypassing one or more program blocks. The bypass has to be done in a
selective and controlled way, otherwise all kinds of problems will take over. The conditional func-
tion IF serves as a decision maker between at two options. The main statement in a macro is:

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

BRANCHES AND LOOPS 173

IF [condition is true] GOTOn

for example,

IF [#7 LT 0] GOTO65 If the value of variable #7 is less than 0, branch to block N65
If the above condition is true, bypass this section up to N65
N65 ... Target block of the IF conditional statement

The branching will only occur if the specified condition is frue (that means the condition is satis-
fied). If not, the block immediately following the IF statement will be executed and no branching
will take place.

It is very important that the target block of the branching, the one called in the GOTOn statement
does exist in the same program, and is not duplicated. If necessary, it is possible to replace the n in
the GOTOn with a variable number or the result of a previous calculation. For example, the fol-
lowing example is perfectly legitimate:

#33 = 65

IF [#7 LT 0] GOTO#33 If the value of variable #7 is less than 0, branch to block N65
If the above condition is true, bypass this section up to N65

N65 R Target block of the IF function conditional statement

The N-address block cannot be used as a variable statement, for example N#31 is illegal.

Unconditional Branching

GOTOn

The GOTOn statement can be programmed on its own, without using the IF function. In this
case, the macro program will branch unconditionally, to the n block number specified at the
GOTOn. Without the IF function, the GOTOn statement has no condition (in this case, it is called
an unconditional statement or unconditional branch or unconditional jump). The range of the
GOTOn statement (conditional or unconditional) is only limited by the maximum of sequence
numbers available for the given control model:

¢ Four-digit sequence number Range of n is 7-9999

¢ Five-digit sequence number Range of n is 7-99999

Do NOT change the block numbers if the macro contains GOTOn branch !

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

174 Chapter 13

Fanuc system will generate an alarm, if the sequence number range is exceeded (Sequence No.
out of range error). Block designation NO is not allowed and will also result in an alarm condition.
Duplicate N-addresses in the same program are possible, but they are not only strongly discour-
aged, they may as well be outright forbidden in macros especially. Definitely do not duplicate the
sequence numbers (N-numbers) in a macro program.

A macro expression (a variable number) may also be used for the block number specified by the
unconditional GOTOn statement, similar to the conditional statement, for example:

#33 = 65 Variable #33 stores the target block number
'C;OTO#33 Unconditional branching to the block N65

Arbitrarily bypass this section up to N65
N65 ... Target block of the GOTOn statement

Whether used conditionally or unconditionally, the GOTOn function should only be used when
necessary. There are perfectly legitimate reasons why to use this function in macros for branch-
ing, but try to limit its usage for branching and looping. There are better functions to establish this
goal, namely the WHILE function.

IF-THEN Option

IF [condition is true] THEN [argument]

Only the Fanuc control models 10/11/15 support the IF-THEN structure of conditional testing,
0/16/18 do not (Fanuc model 21 does). The main concept of the conditional IF-THEN structure is
simplicity. IF-THEN is a shortcut when only two choices are available. Rather than invoking a
formal structure of the IF statement alone, combined with the GOTOn statement, the IF-THEN
option offers an immediate and short solution. Compare the two following examples - both state-
ments will yield identical results. The two examples define the Z-axis clearance in the current sys-
tem of units (either English or Metric):

&« Example 1 - Macro control without the IF-THEN structure

#100 = #4006 Check the current units (English G20 or Metric G21)
IF[#100 EQ 20.0] GOTO20 If the units are English, branch to block number N20
IF[#100 EQ 21.0] GOTO21 If the units are Metric, branch to block number N21

N20 #100 = 0.1 Set 0.1 of an inch as the current clearance (English)
GOT0999 Bypass Metric setting

N21 #100 = 2.0 Set 2.0 mm as the current clearance (Metric)

N999 Start section common to both English and Metric

<... Macro continues normally ... >

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

BRANCHES AND LOOPS 175

&« Example 2 - Macro control with the IF-THEN structure

#100 = #4006 Check current units (English G20 or Metric G21)
IF[#100 EQ 20.0] THEN #100 Clearance above work is 0.1 inch for G20
IF[#100 EQ 21.0] THEN #100 = Clearance above work is 2 mm for G21

|
N ©
o r

< ... Macro program continues normally ... >

Using the IF-THEN method makes the program shorter by one half and is easier to interpret.

Single Conditional Expressions

Macros support all six available conditional expressions, also known as the Boolean Operators.
They compare two sides of an expression:

Math Expression MaCI:O Format
Symbol Function
= Equal To EQ # EQ#
+ Not Equal To NE #I NE #j
< Less Than LT #ILT#
< Less Than Or Equal To LE #I LE #
> Greater Than GT # GT #j
> Greater Than Or Equal To GE # GE #j

For example, the macro expression

IF [#1 EQ #2] GOTO99

will be true, only if the current value of variable #1 is the same as the current value of variable
#2. In such a case, the branching will take place. If the current values of the two variables are dif-
ferent, the condition is false, and the macro continues with processing of the next block, and no
branching takes place.

Calculation formulas can be nested, providing the square brackets are used correctly:

IF [#1 EQ [#2+#3]] GOTO099

In this case, the current values of variables #2 and #3 are summed-up first, and the result of the
sum is compared with the current value of variable #1. If they match, the specified condition is
true, and branching will take place, otherwise the macro continues in the next block.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

176 Chapter 13

Combined Conditional Expressions

In the more complex calculations, two or more conditions have to be evaluated (compared). The
result is often dependent on the returned value of several combined conditions. For example, in
English, you may say “If I have money and time, I will take a vacation.”. In this statement, a sin-
gle true condition is not enough - both conditions must be true for the whole expression to be true.
No exceptions - even if I have the money, but I have no time, I cannot take a vacation. On the
other hand, you may say “If I save enough money or win a lottery, I will take a vacation.”. This is
a different statement. In this case, only one expression has to be true, for me to take a vacation. If
I save enough money, I don't need to win a lottery, and I still can take a vacation. If I do win a lot-
tery, I don't need to save money at all, and I can also take a vacation. These statements and ex-
pressions are found in everyday language.

In macro programming, there two other functions available (actually three) that can be com-
bined to evaluate a given condition on binary numbers, bit by bit. They are:

AND OR

For any given condition, these macro functions can be used:

¢ AND All given conditions must be true,
for the whole condition to be true

¢ OR Only one given condition must be true,
for the whole condition to be true

XOR

Also, there is the third function - the XOR (exclusive OR) - function, but that is quite difficult to
understand at the moment, and is very seldom used in a normal macro work.

When you evaluate a combined conditional statement, always ask the question ‘Do the condi-
tions have to be true ALL at the same time?’. If the answer is Yes, use the AND function, otherwise
use the OR function. The format of input of these functions into a macro has already been de-
scribed earlier. The AND and the OR functions are typical Binary Functions, because their returned
value can only have two states - either TRUE or FALSE.

Although not always necessary, understanding the Binary Number System may be helpful in
certain situations. A brief overview of binary numbers is included in this handbook as well - see
Chapter 4 - System Parameters.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

BRANCHES AND LOOPS 177

Concept of Loops

Looping is another method of making a decision in the macro program flow, also based upon a
specified condition. Just like the IF function requires a true/false evaluation, looping condition
can also return only True or False state.

The greatest difference between the single condition testing (IF) and looping (WHILE) is how
many processes are involved - one or many.

Single Process

Single process has already been covered - the IF function represents a single process. In order
to understand the concept of looping, it is critical to understand the simple top-down general pro-
gram process, without a loop, for any operation. This is the typical process used in standard pro-
grams, with no conditions and no decisions. It can be represented as a generic step-by-step orderly
procedure for any operation or activity (only a very generic model is presented here):

1. Start program Initialization - defaults - cancellations - units, ...

2. Input data Tool - spindle - location - clearances, ...

3. Process data Cycles - macros - feedrates - offsets, ...

4. Output result Actual machining - this is the main program objective
5. Stop program Clear conditions, ...

This method will work well on a single data input (single process), every time. For example,
the preceding five generic steps can represent drilling of a single hole, at any desired location.

Now replace the generic terms with specific drilling operations (all five step numbers match):

1. Start program same as 1. Start program
2. Input XYZ hole location same as 2. Input data

3. Move to the new location same as 3. Process data
4. Drill the hole same as 4. Output results
5. Stop program same as 5. Stop program

Although only the basic drilling process illustrated, the orderly flow shows a clear concept of
what is happening. What is the actual result of this process? Using the hole drilling as an example,
one hole - and only one hole - has been drilled. The single process does not need the IF function,
most standard programs use it daily, however in macros, the IF function represents the single
process, such as a single hole. If more than one hole is needed, the single process is not sufficient.

Multiple Process

In the next stage, the same example will be explored, this time to drill more than a single hole.
The above top-down process is not quite sufficient and a different technique has to be used. Before
thinking of a technique, think of a process. What has to change? We do not want to always start
and stop after drilling the first hole, do we? We want to input the next hole location (item 2), move
to that location (item 3), drill the hole at that location (item 4), and - we want to repeat these three
steps until a// holes are done. Hopefully, the description was clear enough, but a graphical repre-
sentation - using a simple flowchart - shows the comparison of both methods (Figure 20).

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

178 Chapter 13

Figure 20

START START Flowchart comparison

of a single structure process,
4 shown at left, and a repeated

Y A
HOLE DATA K » HOLE DATA / structure process at right

A A 4
[MOVE TO THE LOCATION| [MOVE TO THE LOCATION|

A A 4
/DRILL THE HOLE / /DRILL THE HOLE /

A
(STOP)

Note that the example

as shown at right
represents an endless

or infinite loop - no STOP

A

The two comparable flowcharts indicate the drilling process in principle. However, there is a
major and a very serious problem with the repeated structure. There is no way out! The repetition
shown at the right side of Figure 20 has no provision to stop the processing - the loop is not
stopped - it is not controlled - logically, it runs forever!

It is extremely important to provide an exif from a loop, when certain conditions are satisfied,
for example, when the last hole is drilled. Failure to provide an exist from a loop will cause an
endless or infinite loop. Infinite loops are the most common causes of problems in macro loops.
Terminating a loop is always determined by a specific condition. This condition has to be part of
the loop, based on the job requirements, with the provision to branch out of the loop, when the
condition becomes false. The repetitive flowchart shown in Figure 20 has to be modified.

Figure 21 shows the final flowchart for the drilling process, including the conditional statement
and only two possible outcomes - drill more holes or stop the program processing.

Figure 21

Flowchart showing a logical
flow of the loop, based on
the result of a conditional
decision

The STOP branch provides
exit from the loop

[MOVE TO THE LOCATION |

YES and NO represent
[DRILL THE HOLE TRUE and FALSE

conditions respectively

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

BRANCHES AND LOOPS 179

WHILE Loop Structure

In Fanuc type macro programming, the WHILE function is used to program loops. The format
of the looping function WHILE consists of the function, condition and action:

WHILE [condition] DOn

In a plain language terms, think of the WHILE function as the 'as-long-as’ function. The loop-
ing function WHILE [condition[DOn in a Fanuc macro language means 'process the body of
the loop as long as the specified condition is true'. The DOn action establishes the connection with
the end of the loop, where the n is replaced with a number of the matching ENDn statement. The
loop is programmed with the ENDn function that corresponds to the DOn call, for example, DO1
with END1, DO2 with END2, and DO3 with END3. Only three loop depths can be programmed.

The three allowed loop depths - often known in programming as the levels of nesting - have
three similar forms:

(d Single level nesting
(d Double level nesting
(d Triple level nesting

As the number of nesting levels increases, so does the programming complexity. The majority
of loops for most macro applications are single level, double levels are not too unusual either. Tri-
ple level has a lot of power, but it does need a suitable application to employ it.

Single Level Nesting Loop

Programming only a single WHILE loop function between the WHILE-DOn loop call and its
matching ENDn, defines the single level loop. This is the simplest and most commonly used loop-
ing function used in macro programs. The single level loop processes and controls one event at the
time - Figure 22:

WHILE [... Condition 1 is true ...] DO1 Start of WHILE loop 1
< Body of a single level loop ...>

END1 End of WHILE loop 1

Figure 22

Single level of macro looping - controls one event at the time

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

180 Chapter 13

Double Level Loop

Programming two levels of WHILE between the WHILE-DOn loop and the ENDn defines the
double level loop - indents show the programming structure - Figure 23:

—— WHILE [... Condition 1 is true ...] DO1 Start of WHILE loop 1
< Body of Loop 1 - Part 1 ...>
— WHILE [... Condition 2 is true ..] DO2 Start of WHILE loop 2
< Body of Loop 2 ...>
END2 End of WHILE loop 2

< Body of Loop 1 - Part 2 ...>

END1 End of WHILE loop 1

Figure 23

Double level of macro looping - controls two events at the time

The double level loop is also quite common, because it adds more decision making power to the
macro. If properly structured, it should not present any difficulties at all. Remember that two
events are controlled simultaneously in a double level loop.

A single level of looping should be easy to understand. Continuing with the example of a drilled
hole, the single level macro is suitable to be used when the hole is to be drilled at different - but
equally spaced - locations. A bolt circle (explained in Chapter 20) is an excellent example.

Understanding the double level of looping is a bit more difficult. The double level of looping is
defined as controlling two events at the same time. For example, each hole of an equally spaced
pattern has two internal grooves that share the same XY location. Hole location macro would be
the first level, and machining the two grooves would be the second level.

Triple Level Loop

Programming all three levels of WHILE within the WHILE-DOn and the ENDn defines the triple
level loop. The triple level loop is much less common than the other two, but it does bring even
more decision making power to the macros. It is very important that a proper structure is used.
With more levels, the possibility of a structural or logical error increases. Also keep in mind that
the control software is intentionally designed to cover more than necessary in everyday work.

This last type of a loop structure controls three events simultaneously - again, indents show the
programming structure - Figure 24:

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

BRANCHES AND LOOPS 181

WHILE [... Condition 1 is true ...] DO1 Start of WHILE loop 1
< Body of Loop 1 - Part 1 ...>
— WHILE [... Condition 2 is true ...] DO2 Start of WHILE loop 2
< Body of Loop 2 - Part 1 ...>
WHILE [... Condition 3 is true ...] DO3 Start of WHILE loop 3
< Body of Loop 3 ...>
END3 End of WHILE loop 3

<...Body of Loop 2 - Part 2 ...>

END2 End of WHILE loop 2

<... Body of Loop 1 - Part 2 ...>

END1 End of WHILE loop 3

Figure 24

Triple level of macro looping - controls three events at the time

General Considerations

From the several examples of the WHILE function structure, its proper usage should become
much clearer. When the < condition> in the WHILE statement is satisfied (that means it is true),
the blocks between the DOn and the corresponding ENDn are executed repeatedly, in the order in
which they are programmed. Each new pass through the loop always evaluates the given condition
again and again. When the condition fails, that means it is nof true anymore - it is false, then the
macro flow of the loop is transferred to the block immediately following the ENDn statement. In
some rare cases, the DOn and ENDn can also be used without the WHILE statement, but this is def-
initely not a recommended practice or professional approach to programming.

Restrictions of the WHILE Loop

From the previous examples of a macro loop structure, a very definitive pattern emerges in the
structural nesting of the WHILE function. The DOn and the ENDn must always be programmed in
pairs, working from the innermost loop outwards. Depending on the nesting level (1, 2, or 3), the
correct macro program must follow the pattern order. The order for each nesting level is shown
here in a simplified form (Sn is the start level number, En is the corresponding end level number):

S1..E1 Single level
S1..S2..E2.. E1 Double level
S$1..8S2..S3..E3..E2.. E1 Triple level

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

182 Chapter 13

Each listed digit indicates the current nesting level, and the order of digits represents the order
of program flow from one nesting level to another and then back. This is the nesting structure as it
should be. Unfortunately, mistakes do happen, and in macro looping, the most common mistake
is crossing the levels when more than one level is programmed.

Crossing the WHILE loop between nesting levels is not allowed, for example, the following
WHILE structure (and structures that are similar) is wrong - Figure 25:

—— WHILE [... Condition 1 is true ...] DO1 Start of WHILE loop 1
— Y\?HILE [... Condition 2 is true ...] DO2 Start of WHILE loop 2
%:ND1 End of WHILE loop 1

L END2 End of WHILE loop 2

Figure 25

Common macro looping error - major structure problem (compare with previous formats)

Errors of looping, in any number of nested levels, may not always be the easiest ones to find,
particularly in long or complex macros. That is the main reason why always maintaining order
and consistency in macro program development is so important. For some macro programmers, a
flowchart is a mandatory tool, for others, they can develop a macro very well without a flowchart.
However, a well designed flowchart is important for the beginner, as well as for the seasoned pro-
grammer - it helps to design the macro logic during the development stages and retrace the macro
flow at a later date.

Conditional Expressions and Null Variables

Earlier in this handbook, the important subject of return values of various expressions and cal-
culations was introduced - one of the elements was a null variable (an empty variable or a vacant
variable). In this section, the same null variable and its relationship to conditional expressions will
be evaluated. Make sure to understand this subject well, it can help in many troubleshooting situa-
tions. Conditional expressions used with the IF and WHILE functions (explained earlier) always
compare two values, using comparison operators such as EQ, NE, GT, LT, GE, and LE. If a null
variable is compared with another value, the return value may be either TRUE or FALSE, depend-
ing on the exact situation. Comparing to a zero value is also shown, for more in-depth reference.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

BRANCHES AND LOOPS 183

A null variable is different than a variable with a value of zero! As both the IF and the WHILE
functions share the same logic, only the IF function is shown in the following examples, because
the WHILE function uses the same format:

& Comparing a null variable to a null variable:

#1 = #0 #1 is defined as null (that means #1 is vacant)
IF[#1 EQ #0] Returns TRUE
IF[#1 NE #0] Returns FALSE
IF[#1 GT #0] Returns FALSE
IF[#1 GE #0] Returns TRUE
IF[#1 LT #0] Returns FALSE
IF[#1 LE #0] Returns TRUE

&« (Comparing a zero to a null variable;

#1 =0 #1 is defined as zero (that means #1 is equal to 0)
IF[#1 EQ #0] Returns FALSE
IF[#1 NE #0] Returns TRUE
IF[#1 GT #0] Returns FALSE
IF[#1 GE #0] Returns TRUE
IF[#1 LT #0] Returns FALSE
IF[#1 LE #0] Returns TRUE

& (Comparing a null variable to a zero:

#1 = #0 #1 is defined as null (that means #1 is vacant)
IF[#1 EQ 0/ Returns FALSE
IF[#1 NE 0] Returns TRUE
IF[#1 GT 0] Returns FALSE
IF[#1 GE 0] Returns TRUE
IF[#1 LT 0] Returns FALSE
IF[#1 LE 0] Returns TRUE

& (Comparing a zero to a zero:

#1 =0 #1 is defined as zero (that means #1 is equal to 0)
IF[#1 EQ 0] Returns TRUE
IF[#1 NE O] Returns FALSE
IF[#1 GT 0] Returns FALSE
IF[#1 GE 0] Returns TRUE
IF[#1 LT 0] Returns FALSE
IF[#1 LE O] Returns TRUE

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

184 Chapter 13

Formula Based Macro - Sine Curve

When it comes to machining unique contours based on specific machining definitions (typically
mathematical formulas), most CNC controls do not offer direct support. Developing a contour
cutting program for a parabola, hyperbola, ellipse, sine curve, cycloid, and many other curves,
may be not possible in standard CNC programs, but presents no problem in macros. This section
illustrates the development of a sine curve as the actual cutting toolpath macro example. Since the
control system does not directly support sine curve interpolation (or parabolic or hyperbolic inter-
polation, etc.), the toolpath will be simulated by many small linear motions, in GO1 mode.

Sine curve is one of several mathematical curves that may come handy in certain applications.
Since it is based on a formula, it becomes a very fitting subject for macro development, the main
reason for using this example. It is a simple formula that will be adapted to generate cutting tool
motion. The Figure 26 illustrates a typical sine curve along with the related terminology. The sine
curve is, in effect, a flat representation of a full circle, from 0° to 360°. The distance between the
start and end angles is called Period. The height of the curve is called Amplitfude and is always the
same above and below the X-axis:

Y

90° 180° 270° 360°

=1 4 e e e ol B X

~—AMPLITUDE —=~—AMPLITUDE —
+

—=| =—— ANGULAR INCREMENT
\ PERIOD

Figure 26

Sine curve - graphical layout

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

BRANCHES AND LOOPS 185

In terms of machining programs, only lines or arcs are allowed, not special curves. Any need to
machine a special curve - such as the sine curve shown in the illustration - technique called ap-
proximation has to be used to simulate the curve by a series of very short lines. The shorter each
line is, the more accurate the simulation, but at the price of a longer standard program. Length of
the program is not a concern in macro, since the looping function will always have the same size.

The first step to take is to define the formula mathematically. Since it is a trigonometric sine
curve, the SIN function will be used. Mathematically, the formula to calculate the Y is:

Y = Amplitude x sinX

In many math books, the sine curve formula is listed as ¥ = sinX. This designation is the same
as Y = I x sinX, considering the unspecified amplitude as having the value of 1. Otherwise, the
amplitude must always be specified. The defined period of the curve has to be segmented into
small angle increments for best fit. The first angle increment will be used to create the first linear
motion, the second increment will be used to create the second linear motion, and so on, until all
360° have been calculated in equal increments. The machined result is the required sine curve.

0=z Assignment of variables in the sine curve macro call 08009 is short and simple:

Amplitude ... assigned letter A (variable #1)
Angular increment ... assigned letter/ (variable #4)
Cutting feedrate ... assigned letter F (variable #9)

The macro call will contain only three variables:

G65 P8009 A120.0 I5.0 F250.0

Note that the current units must be used (metric shown) and the angular increment must con-
form to the minimum programmable input of 0.001°. In the example, the sine curve will be ma-
chined as a linear motion - a series of straight lines in increments of 5°. Decrease the increment
for more accuracy, increase the increment for less accuracy. Z-axis motions must be applied in
the main program. The macro will be a single level loop, using a counter of the current incremen-
tal degrees compared with the final angle, such as the 360° used in the example:

08009 (SINE CURVE MACRO)

#25 = 0 Set initial counter for degrees increment

WHILE [#25 LE 360.0] Loop for each linear segment until 360 degrees are machined
#26 = #1 * SIN[#25] Calculate current Y-location

G90 GO1 X#25 Y#26 F#9 Make a linear motion to the calculated XY location

#25 = #25+#4 Increase the counter by specified increment

END1 End of loop

M99 End of macro

%

If required, the start and final angles can be also input as variables, if only a portion of the sine
curve is needed. The sine curve macro can be very easily changed into a cosine curve macro, by
shifting the sine curve 90° to the left, or moving the Y-axis 90° to the right.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

186 Chapter 13

Clearing Common Variables

One very useful and practical example of a simple WHILE loop is the development of a macro
that can be stored in the control memory permanently, to be used by any program or from MDI.
This macro clears the 500+ series of common variables, which can only be cleared by using
macro functions. The CNC operator may clear all the variables at the control, in MDI mode, one
by one. Much better solution is to have a program handy that covers all variables in the range, and
sets them to the null (#0) state individually, by a macro loop:

08010 (CLEAR 500+ VARIABLES - INDIVIDUALLY ONE BY ONE)

#500 = #0 Common variable #500 cleared (set to null)
#501 = #0 Common variable #501 cleared (set to null)
#502 = #0 Common variable #502 cleared (set to null)
#503 = #0 Common variable #503 cleared (set to null)
#999 = #0 Common variable #999 cleared (set to null)

Such a program can be quite long and will take unnecessary memory space. Using a loop, the
program will be shortened significantly and be more professional as well:

08011 (CLEAR 500+ VARIABLES - BY A MACRO LOOP)

#33 = 500 Initialize counter to the first variable (no # symbol !!!)
WHILE[#33 LE 999] DO1 Loop through variables - shown range is #500-#999

#[#33] = #0 Set the current variable number to null (clear current variable)
#33 = #33+1 Update variable number count by one

END1 End of loop - return to the WHILE block and evaluate again
M99 End of macro

%

Variable #33 is a local variable and serves as a counter. Its initial setting is 500, the first vari-
able of the range to be cleared. The maximum range is controlled by the WHILE loop, and the ex-
ample shows #999 as the last variable in the range. This number should be changed to match the
control system. This is also a macro, where the basic G65 statement needs no arguments:

00019 Main program number

G65 P8011 Calls macro 08011 to clear all 500+ variables - no arguments
M30 End of main program 00019

%

The macro O8011 can be very easily adapted to learning variables in the 100+ series as well.
Just change the initial setting (#33) and the maximum rage in the WHILE loop.

Many examples in the handbook use branching and looping functions that can be used in every-
day work. The majority of them contain comments and explanations along with practical applica-
tions. Use them as a resource to create unique macros that can be used on a daily basis.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

14 ALARMS AND TIMERS

The idea of actually causing an alarm during machining operations by a CNC program may be a
bit uncomfortable or even peculiar to many users, regardless of experience. Yet, creating a spe-
cific control system alarm - for a good reason, of course - is nothing more than applying a very
important tool in macro development. Even under normal operating conditions, all control sys-
tems automatically switch to the alarm mode, if a serious and detectable problem occurs. The key-
word here is 'detectable’. Creating macro alarms means just adding customized alarms to the ones
already in the control system.

One basic rule applies to all custom generated alarms - they should be implemented by a macro
program only under one condition - whenever an adverse situation is predictable. The purpose of
all alarms is to terminate the current program activity and force a change in the current conditions,
whatever they may be.

Alarms in Macros

Macro can include a programmed alarm (also known as an intentional error condition), using
the system variable #3000. The variable #3000 must be followed by an alarm number, with an
optional message.

Alarm Number
Depending on the control system, the alarm number can be within a range of:

d O to 200 and more for FS-0/16/18/21 controls
4 0 to 999 for FS-10/11/15 controls

The alarm number selection is at the programmer’s discretion, subject to control specifications.

Alarm Message

Alarm must have a number, but the alarm message is optional. Programming a descriptive mes-
sage will inform the CNC operator about the cause of the alarm. Alarm message must be in the
same block as the alarm number, enclosed in parentheses, and it can be up to 26 characters long
(31 characters on some controls), including spaces. Its contents should be clear, without ambigu-
ous meaning. For example,

(TOOL ERROR) ... Is an ambiguous message
(TOOL RADIUS TOO LARGE) ... is a clear message

If the message is present, both the alarm number and the message will appear on the screen
when the alarm is tripped. If the alarm message is not present, only the alarm number will appear.

187

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

188 Chapter 14

Alarm Format

The macro O8012 illustrates the actual application of a macro alarm that checks the input of an
assigned variable (i.e., argument R, assignment #18). Macro will check if the input radius is
greater than 2.5 mm:

G65 P9000 R2.5 Macro call with one argument (radius amount)
08012 Macro start
IF[#18 GT 0.25] GOTO1001 Check condition for alarm - true or false ?

ce Process all blocks if condition is false
N1001l #3000 = 118 (RADIUS TOO LARGE) Force alarm if condition is true

The selected alarm number and message to the operator is displayed on the screen as either

118 RADIUS TOO LARGE or 3118 RADIUS TOO LARGE

Slight variations may be expected. This is a typical application of a programmed alarm - a con-
trolled generation of an alarm by a macro, for a predictable possibility of an error.

Embedding Alarm in a Macro

Regardless of which alarm conditions are used in the macro, the transfer between the processed
and the unprocessed portions of the program must be smooth, regardless of the returned value
(true or false). For example, a macro may contain the following three alarms (to 'go-to'):

N1001 #3000
N1002 #3000
N1003 #3000

101 (HOLE SPACING IS TOO SMALL)
102 (TWO HOLES MINIMUM REQUIRED)
103 (DECIMAL POINT NOT ALLOWED)

In the macro 08013, these alarms will most likely be located towards the macro end. However,
the macro program that precedes the alarms, using G65 P8013 H8 I12.0 X75.0 Y100.0
macro call, will have to be processed without interruption, if the conditions are false (that means
running good program, with no alarms). For example, this macro structure is NOT correct:

08013 INCORRECT way to program alarms
IF[#4 LE 0] GOT01001 I=#4 variable stores the hole spacing
IF[#11 LT 2] GOTO01002 H=#11 variable stores the number of holes
IF[#11 NE FUP[#11]] GOTO1003 Check if #11 contains the decimal point
G90 X#24 Y#25 Previously defined tool location XY

< ... macro body processing ... >
N1001 #3000 101 (HOLE SPACING IS TOO SMALL)
N1002 #3000 102 (TWO HOLES MINIMUM REQUIRED)
N1003 #3000 103 (DECIMAL POINT NOT ALLOWED)
M99
%

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

ALARMS AND TIMERS 189

The G65 block for the above macro contains all input correctly - 8 holes, 12 mm apart. It means
all IF tests will be false and the macro will continue as intended. It will continue until it reaches
the first alarm message. At this point the alarm takes over and macro processing stops. Ironically,
if one argument is input incorrectly, the macro will issue the appropriate alarm. With all argu-
ments being correct, one alarm will always be issued! That means a flawless macro will generate
alarm 3101 or 101 (HOLE SPACING IS TOO SMALL), indicating wrong data input. Nothing is
wrong with the input, so what is the reason? If a branch is based on a certain condition, the macro
true and false sections have to be separated. In the O8013 example they were not. The alarm mes-
sages were not bypassed if all data input is good. To bypass them, the unconditional GOTOn func-
tion must be included by itself in a block. The n is the block number to branch to. In unconditional
branching, there is no IF, no WHILE - just GOTOn. Program O8014 corrects the previous macro:

08014 CORRECT way to program alarms
IF[#4 LE 0] GOTO1001 I=#4 variable stores the hole spacing
IF[#11 LT 2] GOTO01002 H=#11 variable stores the number of holes
IF[#11 NE FUP[#11]] GOTO01003 Check if #11 contains the decimal point
G90 X#24 Y#25 Previously defined tool location XY

< ... macro body processing ... >
GOT09999 Unconditional bypass added

N1001 #3000 101 (HOLE SPACING TOO SMALL)

N1002 #3000 102 (TWO HOLES MINIMUM REQUIRED)

N1003 #3000 = 103 (DECIMAL POINT NOT ALLOWED)

N9999 M99 Block number to branch to
%

Compare the two previous versions (changes are identified in the O8014 version). The only ad-
dition that can make the macro even better is the saving and subsequent restoring of the current
modal values. Such improvement has nothing to do with alarms, and is included here to show the
complete program segment using intentional alarms. The following example shows the saving of
the current state of G-codes (Group 3) at the beginning of the macro, and restoring it at the end:

08015
#10 = #4003 Current G90 or G91 saved
IF[#4 LE 0] GOTO1001
IF[#11 LT 2] GOT01002
IF[#11 NE FUP[#11]] GOTO1003
G90 X#24 Y#25
< ... macro body processing .. >
GOT09999 Unconditional bypass of alarm list
N1001 #3000 101 (HOLE SPACING TOO SMALL)
N1002 #3000 102 (TWO HOLES MINIMUM REQUIRED)
N1003 #3000 103 (DECIMAL POINT NOT ALLOWED)
N9999 G#10 Previously saved G90 or G91 restored
M99
%

Many macro programmers do not use alarms at all or use them rather poorly. When writing a
macro, write it first without the alarms. When everything works, try to predict what type of errors
are possible later, when the macro is actually used. Then add all alarms covering these situations.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

190 Chapter 14

Resetting an Alarm

When a macro alarm is generated, it will have an accurate resemblance to an alarm generated by
the control system in non-macro applications. Typically, this is the sequence of events:

1. CYCLE START light will be turned off
2. The word ALARM will flash on the screen
3. Alarm number and message (if available) will appear on the screen

At this moment, the control system has stopped all operations. To get rid of the alarm, press the
RESET key. The source (the cause) of the alarm has to be removed, so make sure all tool positions
are correct, then press the CYCLE START key to run the macro again, this time without an alarm.

Message Variable - Warning, Not an Alarm

The system variable #3006 is only available on FS-10/11/15 controls - it allows the program-
mer to issue a message in the macro, without creating an alarm condition. Think of the message
variable as means of issuing a warning, rather than an alarm. A message (warning) can be used in-
stead of an alarm in situations that are not wrong, but when the operator should be warned or oth-
erwise informed of an important issue.

For example, the following program uses argument D (#7) as clearance amount:

G65 P8016 D1.5 Macro call (D = #7 - is clearance amount)

In the macro body, the system variable #3006 is programmed in a format similar to the alarm
variable, but with a different number:

08016

IF [#7 LT 2.0] GOTO101

N100 GOTO09999
N101 #3006 = 1 (2 MM MINIMUM CLEARANCE RECOMMENDED)

N9999 M99
%

When the program message is activated, the CYCLE START light of the control will be turned
off and the message will appear on the screen. When the CNC operator presses the CYCLE START
button again, the part program processing will continue. No reset is necessary in this case and
there is no need to press the RESET button - it will actually be a counterproductive effort, as it

would cancel program execution. Watch the flow of the macro here - the program may be con-
structed in such a way that the bypass block may not be needed, even if the condition is true.

Use the message variable sparingly. This is an example when the programmer is giving up cer-
tain control over the program and leaves it in the hands of the CNC machine operator.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

ALARMS AND TIMERS

191

Timers in Macros

In the last section of this chapter, the topic covers strictly programmable timers, not timers re-
lated to hardware settings in the service or maintenance sense. There are several system variables
available on Fanuc controls relating to timers. Basically, these variables cover the information
about the date and time, and several other options for timing various events.

Time Information

System variables #3001, #3002, #3011, and #3012 relate to the various time data. Time in-
formation may be read as well as written to (Read & Write or R/W).

Variable Number

Description

#3001

This is a millisecond timing variable, with
the count of one millisecond at a time. The
counting starts from zero when the power is
turned on, and continues up to 65535.0
milliseconds, then starts from zero again. It
counts all the time.

#3002

This is an hour timing variable, with the
count of one hour at a time. The counting
starts from zero when the cycle start is first
pressed, and continues to the 114534.612
hours, then starts from zero again. Timer is
updated only when the cycle start lamp is
turned in (in cycle start mode only).

#3011

This variable contains the current date, in the
form of year, month, day (format is
YYYYMMDD). A given date, for example,
December 7, 2005, will be displayed as
20051207.

#3012

This variable indicates current time, in the
form of hours, minutes, seconds (format
HHMMSS). A time, for example, 8:36:17
p-m., will be displayed in a 24-hour format
as 203617.

Timing an Event

An event may be timed using either the #3001 or #3002 system variables. The following ex-
ample does not do very much in practical terms, but it is designed in such a way that the expected

result may be calculated.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

192 Chapter 14

Evaluate the enclosed comments or try at the control to see how the timer works exactly:

08017 (TIMING AN EVENT)
(PART --ONE-- USING #3001)

#3001 = O Reset to zero (start counting from zero)

G91 GO01 X-100.0 F200.0 Duration of this motion is 30 seconds

X100.0 F400.0 Duration of this motion is 15 seconds

N999 (THIS MUST BE AN EMPTY BLOCK) An empty block to prevent look-ahead !!!

#101 = #3001 Returns calculation of 45632.000 (milliseconds)
#102 = #3001/1000 Returns calculation of 00045.632 (seconds)
MOO Temporary stop to check variables

(PART --TWO-- USING #3002)

#103 = #3002 Reset to zero (start counting from zero)
G91 GO1 xX-100.0 F200.0 Duration of this motion is 30 seconds
X100.0 F400.0 Duration of this motion is 15 seconds
N999 (THIS MUST BE AN EMPTY BLOCK) An empty block to prevent look-ahead !!!
#104 = [#3002-#100]*3600 Returns calculation of 45.631993 (seconds)
MOO Temporary stop to check variables

M30 End of program

%

Note the blocks N999 and the attached comment. Since the control is in the look-ahead mode, it
calculates the final value prematurely. The empty block guarantees accurate calculated value.

Dwell as a Macro

Although the dwell function GO4 can be used much more efficiently in the majority of pro-
grams, the dwell may also be programmed with a macro, using the system variable #3001. For
example, GO4 P5000 (a five second dwell) is equivalent to the following macro (and its call):

¢ Macro call:
G65 P8018 T5000 T=#20 can be any other local variable (T is in ms)

& Macro definition:

08018 (TIMER AS A DWELL)

#3001 = O Set system variable for timer to zero
WHILE[#3001 LE #20] DOl Loop until #3001 reaches the set delay
END1 Loop end

M99 Macro end

%

Note that even with the WHILE loop in effect, there is no need to program a counter, since the
system variable #3001 is always counting.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

15 AXIS POSITION DATA

During machining, the cutting tool location changes constantly. Looking at the control Position
display screen, the current tool location can easily be viewed at any time. There are several ways
of looking at the displayed data, for example, the view may show the current absolute position of
the tool (from program zero), or the machine position of the tool (from machine zero) - they are
just two possible options. Control system keeps track of all position related tool data, called the
axis position information. They are described in this chapter.

Axis Position Terms

Fanuc uses several abbreviations that appear in the reference manual. They should be familiar
to any macro programmer who works with axis positions. They make look a bit intimidating at
first, but are logical and easy to get used to. These are the four variables that relate to the axis po-
sition information:

(=2 ABSI0O ABSMT ABSOT ABSKP

¢ ABSIO Programmed endpoint coordinate of the previous block
#5001 - #5015 for the 1st to 15th axis respectively

¢ ABSMT Machine position - always current machine coordinates
#5021 - #5035 for the 1st to 15th axis respectively

¢ ABSOT Absolute position - always current absolute position
#5041 - #5055 for the 1st to 15th axis respectively

¢ ABSKP Position stored during a block skip motion in G31 block
#5061 - #5075 for the 1st to 15th axis respectively

In addition, there are two sets of system variables relating to the tool length offset value, and
servo system deviation error.

The stored Machine and Absolute coordinates are the same as during a regular operation of the
CNC machine. In macros, it means we cannot register (store) the current axis position value, until
the active block has been completed. This is very useful in the block skip mode using the G31
command for probing, but may be undesirable in many other cases. The system variable range of
#5001 to #5015 stores the programmed endpoint (XYZ...) of the last block before the macro
statement, even if these coordinates have not been actually reached. That allows for execution and
calculations to be done before the next block. Improved processing speed is the result.

The G31 skip motion command is described at the end of Chapter 23.

193

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

194 Chapter 15
Position Information
Variables #5001 to #5115 are read-only variables, and cannot be written to.
Variable Position Coordinate Tool Read Operation
Number (1) Information System Offset Value During Motion
#5001 to #5015 Previous Workpiece
block offset Not included Enabled
ABSIO endpoint (G54+4)
#5021 to #5035 . Machine
Current axis .
osition coordinate
ABSMT P system
Disabled
#5041 to #5055 .
Current axis
iti Included
ABSOT position Workpiece
offset
#5061 to #5075 Skip signal (G54+)
position Enabled
ABSKP (2)
Current
#5081 to #5095 tool offset value
) ,
Disabled
Amount of
#5101 to #5115 deviated

servo position

(1) Each range of variable numbers is for 1 to 15 axes. The first number is for the

X-axis,

the second number is for the Y-axis, the third number is for the Z-axis, the fourth

number is for the fourth axis, and so on up to the 15th axis possible.

(2) During the execution of the G31 skip function, the range of variables #5061 to

#5075

holds the tool position where the skip function is turned on. If the skip function is
not turned on, this range of variables holds the end point of the specified block.

(3) Note that the tool offset value range of #5081 to #5095 represents the current tool
offset value, rather than the last value.

(4) Read operation during a tool movement can be enabled or disabled.
In disabled mode, buffering takes place and the expected values cannot be read.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

16 AUTO MODE OPERATIONS

During CNC machining in AUTO mode, the operator decides whether and when to use the vari-
ous overrides available on the machine operation panel. Overrides include the Feedrate Override,
Feedhold, Spindle Speed Override and Single Block. With the exception of the Spindle Speed
Override, all other functions can be controlled by macro and made effective or not effective. In ad-
dition, the macro can also control the Exact Stop Check mode and some wait code signals.

Controlling Automatic Operations

System variables #3003, #3004 and #3005 are used to control the state of various automatic
operations. All these variables use a binary format in different combinations (0 or 1 entries). De-
pending on the actual machining requirements, these settings may be changed by a series of sys-
tem variables. These variables are:

#3003 Control of single block, wait signal for end signal (FIN)
#3004 Control of feedhold, feedrate override, exact stop check
#3005 Settings (System Settings)

The default setting for #3003 and #3004 is 0, meaning that no features are disabled.

Single Block Control

System variable #3003 is used for the automatic operation control of the single block switch.
Single block may not be desirable in certain machining operations, for example in threading or
tapping and some special operations.

Variable #3003 can have four settings, where the 0 (zero) setting is the default when the ma-
chine and control power is turned on (the same as active or enabled):

System Variable Single Block M-S-T Function
#3003 Mode Completion
0 Enabled Waits for completion
1 Disabled Waits for completion
2 Enabled Does not wait for completion
3 Disabled Does not wait for completion

195

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

196 Chapter 16

Single block mode in may be enabled or disabled using this system variable in a macro. If the
single block is disabled using the variable #3003, the machine control panel setting of the single
block switch has no effect on the result. The single block operation of the machine will be disabled
regardless whether the Single Block switch is turned ON or OFF (OFF position is recommended).
Pressing the RESET button or Power Off switch also clears the system variables #3003-#3004.

M-S-T Functions Control

Another feature of the variable #3003 deals with the completion of an auxiliary function when
used in a single block, particularly the M-codes (miscellaneous functions). There are three auxil-
iary functions available on Fanuc CNC systems, often called the M-S-T or MST functions:

M MISCELLANEOUS FUNCTIONS - also known as M-codes (most common)
... programmed with the address M - for example: M08
S SPINDLE FUNCTIONS - also known as S-codes
... programmed with the address S - for example: $1250
T TOOL FUNCTIONS - also known as T-codes
... programmed with the address T - for example: T05 for milling or T0202 for turning

& |f the M-S-T completion is set to 'Wait for completion'

The next block of the program will not be executed
until the M-S-T function initiated is completed

& |f the M-S-T completion is set to 'Do not wait for completion':

The next block of the program will be executed
without the wait for the initiated M-S-T function.

For example, if the system variable #3003 is set to one (1), that means the single block mode
is disabled, and the pending M-S-T functions have to be fully completed, before the next block is
executed. This is a typical mode of the built-in G81 drilling cycle. No additional M-S-T function
should be programmed unless the previous block has been completed. The variable #3003 is de-
signed for such situations. The macro entry is simple - note the required mode must always be
programmed in pairs - ON/OFF or OFF/ON. The G81 equivalent setting will be:

08019
#3003 =1 Disable single block, wait for M-S-T functions completion

< ... tool motions ... >
#3003 = 0 Enable single block, wait for M-S-T functions completion

M99
%

A ETGieer NOBob ks Pefie

AUTO MODE OPERATIONS

FANUC CNC Custom Macros

197

Most CNC lathes may benefit from these functions a little more than machining centers.

Regardless of the application (milling or turning), an important reminder:

Be careful when activating the state of the M-S-T functions !

Feedhold, Feedrate, and Exact Check Control

System variable #3004 is similar to the #3003, but is used for automatic operation control of
the feedhold switch, the feedrate override switch, and the exact stop check control. This variable
can have up to eight settings, with the O (zero) setting as the default for all three functions, when
the machine and control power is turned on. Zero setting means the function is active. Pressing
the RESET button or Power Off will clear both system variables #3004 and #3003.

Gt | Ermt
0 Enabled Enabled Enabled
1 Disabled Enabled Enabled
2 Enabled Disabled Enabled
3 Disabled Disabled Enabled
4 Enabled Enabled Disabled
5 Disabled Enabled Disabled
6 Enabled Disabled Disabled
7 Disabled Disabled Disabled

The #3004 variable controls three states of operation:

1 Feedhold

(1 Feedrate override
(1 Exact stop check mode

Make sure to understand how these operations work before attempting to use them in macros.

& Operation State 1 - FEEDHOLD

When the feedhold is disabled in a macro, using the variable #3004, and the feedhold button
on the control operation panel is pressed, the machine stops in the single block mode. If the sys-
tem variable #3003 (described earlier) has disabled the single block mode, there will be no single
block mode operation available at all.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

198 Chapter 16

& Operation State 2 - FEEDRATE OVERRIDE

When the feedrate override is disabled in a macro, using the variable #3004, all machining
will be done at 100% feedrate, regardless of the setting of the feedrate override switch on the op-
eration panel. 100% feedrate is defined as the feedrate value specified in the CNC program or
macro, using the F-address and applies equally to feedrate per minute and feedrate per revolution.
It works the same for English and metric units of feedrate data input.

& Operation State 3 - EXACT STOP CHECK

When the exact stop check is disabled in a macro, using the variable #3004, there will be no
exact stop check performed, even in blocks without a cutting motion. Exact stop check provides
special means to check a tool position with the program commands GO9 (non-modal blocks), or
G61 (modal blocks). This state is not available on Fanuc 0.

Example of Special Tapping Operation

In Chapter 8 (macro O8004) introduced a special tapping macro (or a tapping macro as a cycle).
Although correct in principle, it did not provide built-in safety features. The macro required that
when processed by the control system all overrides must be set to 100%. This requirement is diffi-
cult to maintain and serious machining problems could happen. Using various modes of the vari-
able settings will disable the feedhold, the feedrate override and the single block modes. If the
exact stop check should not be disabled, the macro definitions of the two variables will be
#3003=1, and #3004=3. If the exact stop check should be disabled, the macro definitions of the
two variables will be #3003=1, and #3004=7. See the above table for details.

As system variables #3003 and #3004 are often used for special cycles, for example, a cus-
tom cycle for tapping (described later in the handbook). In this macro example, we want to simu-
late the effect of the G84 fixed cycle, except the cutting feedrate on the way in will be 80% of the
given feedrate and on the way out 120% of the given feedrate. The tapping macro will be called at
the current X and Y tool location.

¢ Macro call (in English units):

First, the G65 block has to be defined with all required arguments and their assignments:

G65 P8020 R0O.35 z1.15 S750 T36

I where...
R = (#18) R-level clearance equivalent
Z = (#26) Z-depth
S = (#19) Spindle speed (r/min)
T = (#20) Number of threads per inch (TPI)

Other arguments could be added, for example, calculation of the tapping depth, automatic cal-
culation of the top clearance (known as the R-level in G84 cycle), etc. For the purposes of the sub-
ject presented, there is no benefit in complicating the macro. Z0 of the part is the top face - note
the positive value of the Z-depth (forced as negative in the macro).

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

AUTO MODE OPERATIONS 199

¢ Special tapping macro design:

08020 (SPECIAL TAPPING MACRO)

#3003 = 1 Disable single block setting

GO0 Z[ABS[#18]] S#19 M03 Rapid to positive R-level + spindle rotation

#3004 = 7 Disable feedhold, feedrate override, and exact stop check
GOl Z-[ABS[#26]] F[#19/#20*0.8] MO5 Feed to depth at 80% of feedrate - stop spindle
Z#18 F[#19/#20%1.2] M04 Feed back to R-level at 120% feedrate - reverse spindle
#3004 = 0 Enable feedhold, feedrate override, and exact stop check
MO5 Stop spindle

MO3 Restore normal spindle rotation

#3003 = 0 Enable single block setting

M99 End of macro

%

Note that both variables #3003 and #3004 are used twice. This is important - if a particular
state of a setting is changed for the macro only, it should be changed back, when the macro exits.
Although some machining centers do not require stopping the spindle between MO3 and M04 or
MO04 and MO03, it is a safe practice to use the MO5 in the macro anyway - it saves the spindle.

Systems Settings

System settings - represented by the last variable #3005 in this series - relate to the current val-
ues of certain basic system configurations. System variable #3005 may not be available on Fanuc
controls 10/11/15.

Typical system settings include:

(1 Compatibility between controls (for example FS-15 vs. FS-16/18/21)

Automatic insertion of block numbers (sequence numbers - using the N-address)
English or metric input of dimensional values (using G20 and G21 respectively)
EIA or ISO mode selection for the output code

TV (Test Vertical) check performed or not performed

- the TV check is only applied to punched tape equipment

Uoodd

Binary values are automatically converted to decimal values.

Mirror Image Status Check

Mirror image is generally a basic feature of most CNC machining centers and even some CNC
lathes. Its main purpose is to reverse the directional sign of the specified axis, either the X-axis,
the Y-axis, or both the XY-axes on CNC machining centers, and the X-axis on CNC lathes. In ad-
dition, the axis reversal may cause not only the change in the axis-motion direction, but also the
change in the arc direction (CW vs. CCW), and the cutter radius offset. It is the cutter radius off-
set that is most critical, not the other features. Machinability of the part (climb milling vs. conven-
tional milling) may also be affected.

A ETGieer NOBob ks Pefie

200

FANUC CNC Custom Macros

Chapter 16

In the macros, the status of the mirror image can be monitored for each axis individually. This
macro feature is called the mirror image check signal. At any time during the macro processing,
the macro can inquire as to the status of the current setting of the mirror image. The result of the
inquiry is a binary value received and converted into a decimal format.

On most Fanuc controls, the system variable that stores the mirror image related information is
#3007 (bit type) - note the details of bits evaluations:

8th axis Tth axis 6th axis 5th axis 4th axis 3rd axis | 2nd axis | 1st axis
27 26 25 24 23 22 21 20
128 64 32 16 8 4 2 1

This typical status shows up to eight axes. In practice, however, only the first two axes will prob-
ably used most often - the X and the Y axis (commonly the 1st and the 2nd axis) on a CNC ma-
chining center. Some older controls may have fewer than eight axes available under the variable
#3007. The first line of the table is the axis description, the second line is the axis identification -
the third line contains the binary equivalent of each bit (remember - 'binary' means ‘based on only
two selections’, and counting starts from zero, not from one, to the left).

In each available bit, the setting can be either O or 1, depending on whether the mirror image is
currently disabled or enabled:

¢ 0 = Mirror image function for the selected axis is disabled

¢ 1 Mirror image function for the selected axis is enabled

Variable #3007 cannot be written to - it is a read-only variable

As usual in this type of variables, it is the logical sum of the current status (sum of bits) that de-
termines the status of all axes, therefore the return value of the system variable #3007. The re-
turn value of variable #3007 will be the sum of all bits; it is important to know how to interpret
this returned value correctly. Incidentally, this ‘sum of bits’ is quite common in programming,
and requires at least the basic knowledge of the binary number system (see Chapter 4).

Interpreting System Variable #3007

For the example, the common mirror image setting in machine shop applications will be used.
This setting applies to the first two axes only (typically the X-axis and the Y-axis) of a typical
CNC machining center. To find out what the status of the current mirror image setting is, evaluate
the following example - reading it twice may help:

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

AUTO MODE OPERATIONS 201

&« Example - #3007 reads 3 - Active mirror image is in the X and Y axes

Why? When the system variable #3007 is equal to 3 (returned value is #3007 = 3), the cur-
rently mirrored axes are the first two axes in the chart, the X-axis and the Y-axis. This outcome
can only be known by the interpretation of the returned value, stored in system variable #3007.
To interpret the returned value, step through a small step-by-step procedure. The step one is to
subtract the largest bit value possible from the value stored in the #3007 variable. In this particu-
lar case, the largest bit value that can be subtracted from 3 is 2. The number 2 is defined as the
Y-axis, so the Y-axis is currently mirrored. The step fwo is to subtract the new value (calculated
as 2 in the example) from the value of variable #3007 (= 3 in the example):

3-2=1

Since the resulting number 7 is related to the X-axis, it means the X-axis is mirrored as well.
But - there still is the step three to do - to see what all other axes are there to calculate. Take the
resulting number that is 1, and subtract one from it, 1-1 = 0, so there are no more axes to con-
sider. In the final evaluation, if #3007=3, both axes are mirrored. The same method can be
shown in three simplified steps:

d Given: #3007 = 3 Largest bit value that can be subtracted from 3 is 2

a Step1 The number 2 is defined as the Y-axis, so Y-axis is mirrored
a Step2: 3-2=1 The number 1 is defined as the X-axis, so X-axis is mirrored
a Step3: 1-1=0 No other axis is mirrored

& Example - #3007 reads 2 - Active mirror image is in the Y axis only

In this case, the system variable #3007 is equal to 2 (returned value is #3007 = 2), the cur-
rently mirrored axis is the Y-axis. The interpretation is the same as before:

1 Given: #3007 = 2 Largest bit value that can be subtracted from 2 is 2
a Step1 The number 2 is defined as the Y-axis, so Y-axis is mirrored
1 Step2: 2 -2=0 No other axis is mirrored

& Example - #3007 reads 1 - Active mirror image is in the X axis

In this last case, the system variable #3007 is equal to 1 (returned value is #3007 = 1), the
currently mirrored axis is the X-axis. The interpretation is the same as before:

O Given: #3007 = 1 Largest bit value that can be subtracted from 1 is 1
a Step1 The number 1 is defined as the X-axis, so X-axis is mirrored
O Step2 1-1=0 No other axis is mirrored

If #3007 = 0, there are no axes that are mirrored. From these examples and with a little
knowledge of binary numbers, there should be no problem to ‘read’ - to interpret - other returned
values of the system variable #3007 .

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

202 Chapter 16

Controlling the Number of Machined Parts

There are two more system variables that relate to auto mode operation. Two system variables,
#3901 and #3902 control the counting of machined parts during an automatic operation.

They are:
#3901 Number of parts completed (machined)
#3902 Number of parts required

System variable #3901 is used for the number of parts machined. The value of this variable
stores the number of completed parts.

System variable #3902 is used for the number of parts required. The value of this variable
stores the number of required parts (the target number).

Both variables can be used to write to or to read from (read/write type). A negative value should
not be used with these variables in macros (consider using the ABS function).

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

17 EDITING MACROS

Custom macro files are often loaded from an external computer to the CNC system memory.
Long or complex macros are better edited in the computer file, then reloaded to the control system
later. There are also many cases where this method may not be convenient, for example when the
macros are very short or when editing existing macros, already loaded in the system. In such
cases, macro statements can also be input through the control panel keyboard, right at the CNC
machine. There is not much of a difference in editing macros than editing conventional CNC pro-
grams - they are edited by words; for example, to change the word X-123.456 to X123.456, the
whole word has to be altered (editing of individual characters is not normally possible on most
controls). Macro programs are entered and/or edited by special editing units.

Editing Units

A macro that has been stored in the control memory can be edited by moving the cursor to any
editing unit that starts with the following character or symbol:

¢ Address (alpha character of a word, for example X, Y, Z)
¢ Number symbol # at the left side of the = sign

¢ First character of IF, WHILE, GOTO, END, DO, POPEN,
BPRNT, DPRNT and PCLOS

¢ Symbols/, (, =,and ;

Program Comments

In a program, comments, messages and alarm indicators aimed at the machine operator, are
placed within the body of the program, using parentheses (not brackets). For example, a message
to the operator used with the miscellaneous function MOO may read:

N34 MOO (CHECK THE DEPTH OF POCKET)
An example of a user generated alarm could be

N1001 #3000 = 118 (RADIUS TOO LARGE)

When entering a comment or a message from the control keyboard, look for two characters.
The control-out character '(' and the control-in character ")' must be available on the keyboard.

203

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

204 Chapter 17

Not all Fanuc models have these characters on the keyboard. For example, some earlier types
of Fanuc 16 do not have the two characters on the keyboard, but do have it available as a softkey
selection. If the control systems allows messages of any kind to be used, it may be convenient to
type them (with the rest of the program) on an external computer, and load them via a cable from
the computer to the CNC unit.

Abbreviations of Macro Functions

Many macro functions are special words (called functions) of more than two or three charac-
ters. During a keyboard input of these characters, extra time is needed to enter the whole
multi-character words, often with the frequent use of the Shift key. Fanuc offers a two-character
shortcuts for most of the available functions to speed up the manual keyboard input. This shortcut
can be used for inserting new words or altering existing words:

Macro Editing Macro Editing Macro Editing
Function Shortcut Function Shortcut Function Shortcut
ABS AB BPRNT BP PCLOS PC
ACOS * AC cos co POPEN PO
ADP * AD DPRNT DP ROUND RO
AND AN END EN SIN Si
ASIN * AS EXP * EX SQRT sSQ
ATAN AT FIX FI WHILE WH

BCD BC FUP FU TAN TA
BIN BI GOTO GO XOR X0

The functions identified with (*) are not available on Fanuc 0/16/18/21 model controls. An ab-
breviated shortcut of the macro function will be fully displayed on the control screen. The follow-
ing examples compare the two methods of macro abbreviations:

(1 Abbreviated length input example:

WH[AB[#1] LE RO[#2]] Abbreviated input format

[Full length input example - the abbreviated input above is the same as the full input below:

WHILE[ABS[#1] LE ROUNDI[#2]] Full input format

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

18 PARAMETRIC PROGRAMMING

This chapter introduces the basic and the key part of the handbook - it introduces various Fanuc
control features that relate to practical uses for macros in a typical machine shop environment. It
also covers the benefits that can be expected. Previous chapters have already provided many nec-
essary 'tools of the trade'. That does not mean there are no more 'tools' available - on the contrary
- but enough 'tools' have already been presented to be able develop some actual macros that can
be used on a daily basis. Before discussing the actual development some background should help.

What is a Parametric Programming ?

Since the days of language based NC and CNC programming, parametric approach to program
development was promoted. The requirements were quite expensive, because the user had to have
a powerful mainframe computer (usually leased on a monthly basis) and equally powerful soft-
ware. Needless to say, the high cost of ownership, various line-time fees, and even the rental
costs, were the deterrent. Today, the only computer that is needed is the CNC system at the ma-
chine tool, equipped with the relatively inexpensive Fanuc Custom Macro B option. Personal
computer or a laptop do help as convenience, but are not absolutely mandatory.

Parametric Programming is also called the Family of Parts Programming. As the name sug-
gests, a group of similar parts, those belonging to the same family, can be programmed by using
variable - rather than specific - dimensional and machining data. In this type of programming, de-
cisions are included in the program, based on the supplied data, and adhering to certain con-
straints. Of course, much stronger programming tools than those available for standard CNC
programming are required. Macros provide those tools. Parametric program is always a macro,
but a macro does not have to be a parametric program in the sense of family of similar parts.

The next two chapters will provide details about actual development of macros for a family of
similar parts and a family of similar operations.

Variable Data

What data can be of the variable type? Just about any data in the program can be variable. Typi-
cally, machining conditions are changed by different materials (soft or hard), types of cutting tool
material (HSS or carbide), machine tool used (heavy built or light built), dimensional data, sur-
face finish requirements, tolerances, and so on. Depth of cut, width of cut, number of cuts, spin-
dle speed, feedrate, etc., they also may change, while the fundamental features do not.

On a very simple level, take a rectangular shape that has to be machined to a certain length and
width. These two dimensional features are variable features, if many rectangles have to be ma-
chined. Making a separate program for each rectangle drawing is the traditional way. Making one
macro that will do any rectangle is the most efficient way, the macro way. By substituting the
length and width variables, the 'new' program can be used. Benefits are fast becoming clear.

205

A ETGieer NOBob ks Pefie

206

FANUC CNC Custom Macros

Chapter 18

Benefits of Parametric Programming

Fast turnaround in production is the most significant benefit of family of parts macros. More
time is often needed to develop a macro than a standard program, but this time is an excellent in-
vestment, especially if the macro will be used often. Knowing the benefits parametric program-
ming offers, contributes to better decision when to develop a parametric program and when a
standard program is more suitable. Parametric programming benefits in these improvements:

& Overall benefits

a
a
a

a

Quick turnaround between parts
Reduced time for program checking
Product quality improvement
Decrease of overall production costs

Individually, the benefits may be further identified in the production and programming areas:

& Benefits in the production area:

[I N N Ny

Reduction of scrap parts

Increased quality of the machined part
Tooling cost down due to standardized tooling
Increased productivity of the CNC machine
Lower maintenance costs

¢ Benéefits in the programming area:

N
N
N

a

Drastic reduction is programming time
Programming errors reduced or eliminated
Consistency for all similar parts

Easier workload transition

In order to benefit from the parametric approach to programming, the first step is to identify
suitable parts. Not every programming job is suitable for the additional investment in time.

When to Program Parametrically

The several areas already mentioned are also very important in determination whether the para-
metric programming will bring benefits or not:

a

I W W

Large number of parts that are same in shape but different in dimensions
Large number of parts that are similar in shape

Parts that repeat fairly frequently

Parts that contain repetitive tool path

Various machining patterns

Parametric of programming is never a replacement for other methods - it only enhances them.
There could be a significant investment in time spent on parametric macro program development.
The resulting benefits must be tangible and measurable, in order to be economically efficient.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

PARAMETRIC PROGRAMMING 207

Planned Approach to Macro Development

When it comes to actually writing a parametric program, or any other macro, there are many
personal preferences programmers choose from. Macros are usually written by experienced pro-
grammers, who have developed a certain programming style already. However, some techniques
have proven to work well for most programmers. The first consideration, and the one that is also
the most important, is to have a goal - a purpose. What objectives the macro should achieve?

Following this chapter is a simple but quite comprehensive practical example of a planned ap-
proach to macro development for family of parts. The techniques and considerations from this
section will be applied to the practical example that follows. It is important to understand them
well. The presented list is a suggestion only - its purpose is to offer guidance through all steps of
developing a successful macro. The practical example will use many of these suggestions.

1. FIRST ESTABLISH THE MAIN OBJECTIVE

Many programmers can get a little too ambitious and try to set the objective too high and want a
single macro to do too much. That could be a very serious mistake. Decide what the macro must
do, evaluate other possibilities, discard what is impractical and adhere to that objective. Often two
small macros are better than one large macro.

2. PLAN WELL AHEAD

Good planning is the key to success. Start with the drawing first, and for parametric programs,
study several similar drawings. Identify the features that never change, and features that may
change. Do not forget the material of the part, the setup methods, the machine used, and the tools.
Try to predict what features may exist on similar drawings in the future. Always think ahead, and
evaluate as many options as possible. Ask the right people for an opinion. Even with a well estab-
lished objective, poor planning will result in a poor macro - establish strict criteria.

3. MAKE A GENERIC DRAWING SKETCH

Seeing is believing - draw a schematic sketch that shows all features of the planned macro. Use
details if necessary, and establish critical locations, such as the program zero, clearances, start
point for the tool, offsets, tool change point (if required), etc. If the macro requires the use of a
mathematical formula, include the generic formula in the sketch and test the formula on all typical
features. Such a working sketch, with or without calculations, should always be kept up to date
and filed for future reference.

4. DECIDE ON THE TOOLPATH METHOD

Decide on the method of how the tool is going to approach the material, cut the material, and
depart from the material. Think of the current part as well as the future parts. Can one tool be used
or more tools are necessary? Can the toolpath be uniform? Is the starting point in a safe location?
How about calculating the depth, width, stepover amount, number of passes, penetration clear-
ance, roughing and finishing, and dozens of other considerations? Collect all information that can
be collected, including machining conditions such as spindle speeds and feedrates. Keep in mind
that the more variable data is included, the more powerful the parametric program or the macro
becomes. On the negative side, it will take longer to develop and verify such a program.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

208 Chapter 18

5. IDENTIFY AND ORGANIZE VARIABLE DATA

Once the information is collected, identify and organize the data into coherent units. Decide
what local variables will have to be defined as arguments in the G65 command block. Do not in-
clude data that can be calculated. Include data that can be read from the drawing, even if they are
not needed directly. For example, macro may need a circle radius for calculation, but the drawing
specifies a diameter. Rather than asking for the radius input as an argument, supply the diameter,
then divide it by two in the macro body. Watch for entries that require decimal point and/or nega-
tive values. Use relevant and mnemonic variable assignments if possible, for example A (#1) for
an angle input, R (#18) for a radius input, and so on. This is not always possible, but some are
better than none. Always document the meaning of all variables - easy to forget later!

6. DESIGN THE PROGRAM FLOW

A flowchart definitely helps at this stage of macro development. Many programmers consider
the flowchart development a mandatory step, even insist on it. All the programming aids available
in a macro, such as looping, conditional testing, branching, decision making, etc., can be repre-
sented graphically, in a flowchart. Once the flowchart is designed, test it several times, using dif-
ferent input conditions and decisions. The macro should work in all instances. Do not be afraid to
test seemingly impossible or improbable conditions. When the flowchart logic fails and the
flowchart is correct, the macro needs to be redesigned and tested again, always from scratch!
With more experience, another way to design a smooth program flow is to establish so called
pseudo-code, which is a common method by many software programmers. Pseudo-code is a very
tight and detailed procedure, written in normal language, that sequentially lists every step and all
steps of what has to be done. It is not as convenient method as a flowchart, but it does work.

7. DON'T COUNT ON DEFAULTS

In standard CNC programming, many programmers count on the defaults of the control system
and do not include many program codes, particularly the preparatory G-codes. For example, they
count on the default units system and do not include the G20 or G21 commands in the program.
The same may apply to the G90 or G91 commands, and a number of others. In macros, always
keep in mind that all decisions have to be reflected in the macro - never take anything for granted,
and never count on system defaults.

8. WRITE THE MACRO PROGRAM

This is the stage that places the macro code on paper, in the control, or in the computer file. Its
purpose is to develop the actual program. Data in the flowchart or in the pseudo-code is used, in
the same order, with the same logic, and converted into the Fanuc macro code. It is important to
document every macro - good documentation is not enough - only a first class documentation will
do. Documenting the macro is not just aimed at the CNC operator, it is a permanent document
available to any programmer who may work with the macro. Procedure that is clear today will
fade away in a very short time. Documentation can be internal, in the form of commenting each
block, or external, with descriptions in plain language. Equally important, actually very impera-
tive, is to preserve all current program settings before a macro is executed, change the settings
within the macro as needed, and restore the original settings before the macro exists. This ap-
proach is a sign of professionalism and makes a perfect and practical sense as well.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

19 FAMILY OF SIMILAR PARTS

The previous chapter set the foundations of parametric programming in general - this chapter
presents a complete practical application - an actual macro development for a typical family of
similar parts. The next chapter will build on the same concept and offer samples of macro devel-
opment for a family of similar machining operations.

Macro Development in Depth - Location Pin

This section may well be one of the most important subjects to study, as it covers macro devel-
opment in a comprehensive manner. The project in the example is called Location Pin, and is de-
signed for a CNC lathe. The logic and procedures presented here apply to both types of machines
equally, as do many macro features. As is standard in CNC programming, the provided engineer-
ing drawing forms the first element in the process. In this example, all parts in the series are listed
in a single drawing, so the drawing itself is parametric. In other cases, the programmer has to get
the information from several individual drawings.

Figure 27 shows the pin data as supplied to the programmer. The first step is to study and evalu-
ate the drawing and information provided in it.

B
A MATERIAL: 1020 STEEL
@50 mm BAR
e 1x45°
Q~
&
Pin| A B C D R
001 23 | 44 | 24 | 46 | 3
002 25 | 46 | 28 | 48 | 2
003 19 | 45| 21 | 47 | &
() — — U
004 16 | 40 | 25 | 49 | 3
/
LOCATION PIN
J
Figure 27
LOCATION PIN - drawing used to illustrate the development of a typical macro for family of similar parts
209

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

210 Chapter 19

Drawing Evaluation

Even a casual look at the drawing reveals that this is not a single part drawing. There are four
pins required to be machined (and programmed). All dimensions are given, so is the material. The
designer of this part has chosen one generic drawing rather than four individual drawings. In a
sense, the designer has approached the project as a family of parts - the same what the program-
mer will do. All four pins are similar - they share several characteristics. In all, there are seven
dimensions specified. Two of these dimensions are fixed, the other five are variable. All dimen-
sions provided are correct and will make the part as shown. For example, there will always be a
flat shoulder face between the two radiuses. This and similar observations are very important to
find out before the macro is even started.

Objective of the Macro

The single most important objective of the macro is to design it in such a way that all four pins
in the series (and possibly others) can use a single part program - so they can be machined just by
changing the assignments of the G65 arguments (variables) in the main program. Before the ob-
jective can be met, a few technological decisions have to be made. The first of them is to decide on
the part setup and the method of machining the part.

Part Setup, Tooling and Machining Method

The way the job is setup has to be considered together with the way it will be machined. Selec-
tion of one method often influences the other. Machining method influences the tooling selection.
The drawing identifies the material as mild steel supplied as a bar of the same diameter for all
parts (50 mm). For the purposes of macro development, these conditions have been established:

(1 Part zero at the front of the finished face X0 = mandatory center line

[Minimum face cut (< 0.5 mm) single cut

(1 Only one tool is used - T1 with wear offset 1 program can easily be changed to two tools
(1 Spindle speed and feedrates do not change all parts are from the same material

(1 G71 and G70 multiple repetitive cycles will be used two block format

([No back operation will be included part-off and secondary operation

(1 Coolant will be used

Every setup can be improved - this is only a suggestion and also illustrative method used for the
example. The project focuses on macro development only.

The actual toolpath can also be defined in detail:

Step 1 - Rapid towards the part for facing cut

Step 2 - Face off the front just below center line
Step 3 - Rapid to the start point of the G71 cycle
Step 4 - Rough out the shape - leave suitable stock
(1 Step 5 - Finish the shape with G70

I W N

In five simple steps the machining is completed. Two tools can be used instead of one and other
changes can be made as well.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

FAMILY OF SIMILAR PARTS

21

Drawing Sketch

Even for simple parts, a good drawing sketch helps visualize the toolpath and data associated
with it, such as clearances. Figure 28 shows the part contour used for the G71 and G70 cycles.

e oo ,sP
L s 1

_ B

COMMON TOOLPATH FOR
G71 AND G70 CUTTING CYCLES

‘A" IS THE P-BLOCK IN THE CYCLE
'F'1IS THE Q-BLOCK IN THE CYCLE

Figure 28

Common toolpath for all parts in the family - used by G71 and G70 cutting cycles

Standard Program

Select one part of the series (PIN-001 shown) and make a standard program for that part only,
applying the previous selections. This is a step that can be avoided with growing experience, but
going through it presents certain coherence to the development. Standard program for PIN-001 is

listed with relevant comments:

(PIN-001 STANDARD PROGRAM)

Standard program for PIN-001 only

(X020 - CENTERLINE AND FRONT FINISHED FACE)

(BAR PROJECTION FROM CHUCK FACE =
N1l G21 TO0100

N2 G96 S100 MO3

N3 GO0 X53.0 Z0 T0101 MO8

N4 GOl X-1.8 FO.1

N5 GO0 Z3.0

N6 G42 X51.0

N7 G71 U2.5 R1.0

N8 G71 P9 Q14 Ul.5 W0.125 FO0.3

N9 GO0 X16.0

N10 GOl X24.0 z-1.0 FO.1

N1l z-23.0 R3.0 F0.15

N12 X46.0 R-2.0

N13 z-47.0

N14 X54.0 FO0.3

N15 G70 P9 Q14 sS125

N16 GOO G40 X100.0 z50.0 T0100 MOS
N17 MO1

PART LG + 5 MM)

Metric units and Tool 1 - no wear offset

CSS at 100 m/min - CW spindle rotation

Start position for face cut + wear offset + coolant
Face just below centerline at 0.1 mm/rev feedrate
Clear-off face - Z-axis only - by 3 mm 'A’ for Z
X-start for G71 cycle and tool radius offset 'A’ for X
G71 - 2.5 mm cutting depth, 1.0 retract

G71 - N9 to N14 contour - XZ stock - 0.3 mm/rev
Calculated X-diameter for chamfer - '1’

Cut front chamfer at 0.1 mm/rev - '2'

Cut small dia + inner radius at 0.15 mm/rev - '3’
Cut face and outer radius - '4’

Cut large diameter 3 mm past part length - '5’
Clear-off stock diameter - X-axis only by 2 mm - '6’
G70 finish contour at 125 m/min

Rapid to tool change position + cancellations
Program stop (optionally - next tool expected)

Once the standard program is established as correct, identify all values that have to be changed

for any of the three remaining pins.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

212 Chapter 19

Identify Variable Data

The purpose of finding the data values that change from part to part means finding variable
data. Data that changes will help establish variables for the macro, either as a direct input or for
further calculations. In the next listing, the same standard program is presented, this time with all
variable data underlined:

(PIN-001 STANDARD PROGRAM) VARIABLE DATA IS UNDERLINED
(X020 - CENTERLINE AND FRONT FINISHED FACE)
(BAR PROJECTION FROM CHUCK FACE = PART LG + 5 MM)

N1 G21 TO0100 Metric units and Tool 1 - no wear offset

N2 G96 S100 MO3 CSS at 100 m/min - CW spindle rotation

N3 GO0 X53.0 z0 T0101 MO8 Start position for face cut + wear offset + coolant
N4 GOl X-1.8 FO.1 Face just below centerline at 0.1 mm/rev feedrate
N5 GO0 z3.0 Clear-off face - Z-axis only - by 3 mm

N6 G42 X51.0 X-start for G71 cycle and tool radius offset

N7 G71 U2.5 R1.0 G71 - 2.5 mm cutting depth, 1.0 retract

N8 G71 P9 Q14 Ul.5 W0.125 F0.3 G71 - N9 to N14 contour - XZ stock - 0.3 mm/rev
N9 GO0 X16.0 Calculated X-diameter for chamfer - '1’

N10 GOl X24.0 Z-1.0 FO.1 Cut front chamfer at 0.1 mm/rev - '2’

N1l Z-23.0 R3.0 F0.15 Cut small dia + inner radius at 0.15 mm/rev - '3’
N12 X46.0 R-2.0 Cut face and outer radius - '4'

N13 z-47.0 Cut large diameter 3 mm past part length - '5’
N14 X54.0 F0.3 Clear-off stock diameter - X-axis only by 2 mm - '6’
N15 G70 P9 Q14 S125 G70 finish contour at 125 m/min

N16 GOO G40 X100.0 z50.0 T0100 MO9 Rapid to tool change position + cancellations
N17 MO1 Program stop (optionally - next tool expected)

This is a simple example - six program entries have been identified (underlined). Study them in-
dividually and very carefully - these values will become variables in the macro. Block by block
evaluation yields some insight into the selected data:

N9 GO0 X16.0 Calculated X-diameter for chamfer - '1'

Block N9 represents the first point of the contour '/’ (P9 in the cycle block). It is the X-position
for the chamfer cutting that follows. This diameter is not on the drawing, it has to be calculated,
based on the chamfer size (1 mm at 45°) at the small diameter and the current Z-clearance (3 mm
as per block N5). Working with a 45° chamfer is always easy and no trigonometry is required.
The small diameter is 24 mm, chamfer is 1 mm, and the Z-clearance is 3 mm.

To calculate the corresponding X-diameter is easy - just watch the process carefully and make
sure all values are calculated for a diameter, not per side (radius):

X=24-2x1-2x3=16 mm = X16.0

This calculation will be part of the macro, using other variables, still to be defined.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

FAMILY OF SIMILAR PARTS 213

N10 GO1 X24.0 z-1.0 FO.1 Cut front chamfer at 0.1 mm/rev - '2’

The smaller of the two diameters has two characteristics - it always starts at the end of the 1 mm
chamfer (Z-1.0), and it is always defined directly in the drawing, although different for each part.
As such, it automatically qualifies for a variable definition (assignment). The letter C in the draw-
ing can also be used in the macro. Assignment C corresponds to the local variable #3 in the As-
signment List 1 (see Chapter 8).

Therefore, the first definition can be made, with a value assigned to each part:

Part number #3 variable assignment
PIN-001 #3 = 24.0
PIN-002 #3 = 28.0
PIN-003 #3 = 21.0
PIN-004 #3 = 25.0
N11 z-23.0 R3.0 F0.15 Cut small dia + inner radius at 0.15 mm/rev - '3’

In block N11, there are two variable data, again, both are directly defined in the drawing. The
Z-position represents the length of the small diameter ('A' dimension in the drawing - between the
front face and the shoulder), the R-value represents the inner fillet radius dimension in the draw-
ing). Virtually all Fanuc lathe controls support automatic cornerbreak for chamfers or radiuses
that are formed at 90°, between a face and a shoulder or a shoulder and a face, with enough travel
for the break. If the automatic cornerbreak is not available on the control system, both starting and
ending points of each arc will have to be calculated. In that case, a circular interpolation command
GO02 or GO3 will be used.

Both letters from the drawing can also be used as assignments - the letter A corresponds to vari-
able #1 and the letter R corresponds to variable #18, from the Assignment List 1.

Part number #1 variable assignment #18 variable assignment
PIN-001 #1 = 23.0 #18 = 3.0
PIN-002 #1 = 25.0 #18 = 2.0
PIN-003 #1 = 19.0 #18 = 4.0
PIN-004 #1 = 16.0 #18 = 3.0

Keep in mind that the tool will nof cut all the way to the sharp corner. The control will detect the
radius and start cutting at the proper location. The same cutting method applies to the outer radius.

As the program continues, the facing cut follows the fillet of the inner radius.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

214 Chapter 19

N12 X46.0 R-2.0 Cut face and outer radius - '4’

In block N11, the transition was between a diameter and a shoulder, using the automatic corner-
break feature. Block N12 does exactly the same from a shoulder to a diameter. In this block, the
outer radius of 2 mm is common to all parts in the series, and no variable is necessary. The target
for all parts is the large diameter, identified in the drawing by the letter D.

Letter D corresponds to variable #7 in the Assignment List 1, and another table can be made:

Part number #7 variable assignment
PIN-001 #7 = 46.0
PIN-002 #7 = 48.0
PIN-003 #7 = 47.0
PIN-004 #7 = 49.0

There is still one more cut left, that will also use a variable value - the part length B.

N13 Z-47.0 Cut large diameter 3 mm past part length - '5'

The table of the four parts specifications lists the letter B as the overall length of the part, that is
the finished length when all operations are completed.

The letter B can also be used as a variable assignment (#2) and will be assigned the defined
length of the pin, as per drawing:

Part number #2 variable assignment
PIN-001 #2 = 44.0
PIN-002 #2 = 46.0
PIN-003 #2 = 45.0
PIN-004 #2 = 40.0

So far, all assignments matched the required drawing dimensions. In this case, that is not so.
The PIN-001 example shows the Z-position in block N13 as Z-47.0, not as Z-44.0. The 3 mm dif-
ference is intentional - it provides a machined diameter for the subsequent part-off tool, to allow
for a smooth entry of the part-off tool into the material. It may also include extra clearance for any
secondary operation that will follow. This fixed amount of 3 mm has to be accounted for - some-
where in the program. That bring out a few questions:

Question 1 - should the variable #2 be changed by 3 mm? Question 2 - should the 3 mm be a
new variable? Question 3 - should the 3 mm be part of the macro? Each of the three questions can
be answered yes, but only one answer can be used, only one decision.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

FAMILY OF SIMILAR PARTS 215

As part of the macro development, this question represents may possibilities that will arise.
Each question is equally important and deserves to be evaluated on its own:

€ Question 1 - Should the variable #2 be changed by 3 mm?

Definitely NOT! This is a very poor practice. Yes, it would work, but experienced programmers
consider this type of input 'contaminated' or 'tarnished'. Any assignment that cannot be traced to
some specific definition is not a good assignment. Seeing the #2 defined as B-47.0 or B47.0 (for
example) does not provide the tie needed to the part drawing. In fact, it may be confusing, if the
actual length of another part is true 47 mm. Stay away from this type of variable assignment.

& Question 2 - Should the 3 mm be a new variable?

Possibly. 1t depends whether the extra length provision for the part-off tool will change from
one part to another. This can happen, for example, if the part-off tool that follows has a different
insert width selected for each job or an additional facing clearance will be required for the second-
ary operation (not part of this example).

¢ Question 3 - Should the 3 mm be part of the macro?

If the answer to Question 2 is positive, the answer to Question 3 must be negative - and vice
versa. There is no other option.

For the four pins example, there is no reason to change the 3 mm extended length from one part
to another, so the answer is NO to Question 2 and YES to Question 3. The 3 mm tool travel exten-
sion will be incorporated in the macro as a fixed value. Of course, it can be any other reasonable
length of the extra motion, but always consider its impact on the part setup.

Creating Arguments

Once each variable has been assigned and related decisions have been made, it is a good time to
put all information into one place - to create macro arguments for the G65 macro call. The follow-
ing table sums up the arguments and variable assignments for all four parts - see Figure 29.

Dimension Dimension Dimension Dimension Dimension
Part A B C D R

number

A = #1 B = #2 C = #3 D = #7 R = #18
PIN-001 A23.0 B44.0 c24.0 D46.0 R3.0
PIN-002 A25.0 B46.0 c28.0 D48.0 R2.0
PIN-003 Al9.0 B45.0 c21.0 D47.0 R4.0
PIN-004 Ale6.0 B40.0 c25.0 D49.0 R3.0

Note that the selected arguments do not always have to match the dimensions of the parametric
drawing. Any legitimate arguments can be used, as long as it belongs to the Assignment List 1.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

216 Chapter 19
)
&
* b 2o
3 \f s X500
GI —— X51.0
5 V " 1 X#7
R
3 2 X#3
X[#3-2%1-2%3]
1
Figure 29

Common toolpath - fixed and variable assignments

Using Variables

Once the arguments have been defined, the macro can be developed, using the Figure 29 as a
reference. The structure of the macro must be such that it covers each part of the family. In its
first version, the program will take on many macro characteristics. The underlined words that
need no calculation will be changed into variables and those that do need calculation will create a

composite variable entry.

All words affected by the change are still underlined for emphasis:

(PIN-XXX MACRO PROGRAM)
(X0Z0 - CENTERLINE AND FRONT FINISHED FACE)
(BAR PROJECTION FROM CHUCK FACE =

N1
N2
N3
N4
N5
N6
N7
N8
N9
N10
N1l
N12
N13
N14
N15
N16
N17

G21
G96
GO0
GOl
GO0
G42
G71

T0100
S100 MO3
X53.0 z0 T0101 MO8
X-1.8 F0.1

z3.0
X51.0
U2.5 R1.0
G71 P9 Q14 ULl.5 W0.125 FO0.3
GO0 X[#3-2%1-2%3]

GOl X#3 2-1.0 FO.1

Z-#1 R#18 FO.15

X#7 R-2.0

Z- [#2+3.0]

X54.0 FO.3

G70 P9 Q14 S125

GO0 G40 X100.0 250.0 T0100 M09
MO1

VARIABLE DATA IS UNDERLINED - PART 1

PART LG + 5 MM)

Metric units and Tool 1 - no wear offset

CSS at 100 m/min - CW spindle rotation

Start position for face cut + wear offset + coolant
Face just below centerline at 0.1 mm/rev feedrate
Clear-off face - Z-axis only - by 3 mm

X-start for G71 cycle and tool radius offset

G71 - 2.5 mm cutting depth, 1.0 retract

G71 - N9 to N14 contour - XZ stock - 0.3 mm/rev
Calculated X-diameter for chamfer - '1’

Cut front chamfer at 0.1 mm/rev - '2'

Cut small dia + inner radius at 0.15 mm/rev - '3’
Cut face and outer radius - '4’

Cut large diameter 3 mm past part length - '5’
Clear-off stock dia - X-axis only - by 2 mm - '6’
G70 finish contour at 125 m/min

Rapid to tool change position + cancellations
Program stop (optionally - next tool expected)

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

FAMILY OF SIMILAR PARTS 217

Block N9 is a composite variable entry - it contains a calculation. A separate variable can be de-
fined internally in the macro or the definition can be embedded into the tool motion address, creat-
ing a composite variable entry (as shown). Any variable defined as an assignment takes away
memory space of the control system, whereby a composite calculation does not. An internal calcu-
lation will be provided in this case - PIN-001 shown:

X = #3 - 2 x chamfer size — 2 x Z-clearance = #3 -2x1-2x3=24-2-6 =16 =X16.0

Figure 30 illustrates the calculation of the X-diameter in block N9 (P-address in the G71/G70
cycle) - already shown in the overall illustration (Figure 29) on the previous page.

Figure 30

o

—
|

N

20
Z3.0

Detail view of the front chamfer calculation

X#3

X[#3-2%1-2%3]

Block N9 can now be written in a variable format (common calculation):

N9 GO0 X[#3-2*1-2*3] Calculated X-diameter for chamfer (variable)

Similar to N9 block calculation, but much simpler, block N13 (not shown) represents the ex-
tended tool motion by 3 mm along the Z-axis - note how the 3 mm distance has also been incorpo-
rated into the motion, along with the variable #2: N13 z-[#2+3.0]. As in block N9, if the
arithmetic or similar expression is enclosed in square brackets, the control system will calculate
the combined return value first, then acts upon it - no separate variable definition is needed.

Writing the Macro

The final step is to take the standard program with macro features and turn it into a real macro.
Macros should only include program blocks that change from one job to another (within the same
family). In our case of the four pins, the roughing cycle (and its data) is the only area of the pro-
gram that changes - the macro will only contain the G71 rough turning cycle, currently repre-
sented by blocks N7 to N14 and the G70 finish turning cycle, currently represented by the block
N15 in the previous examples. Although only the actual contour changes, it is better to include
both G71 and G70 cycles for easier orientation.

In order to write the macro, the last example presented has to be split into two sections:

[Section 1 - will include the main program with the G65 macro call and arguments
1 Section 2 - will use the G71 and G70 machining cycles to cut the defined toolpath

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

218 Chapter 19

Note the change in block numbers in the following programs:

(PIN-001 - MAIN PROGRAM)
(X020 - CENTERLINE AND FRONT FINISHED FACE)
(BAR PROJECTION FROM CHUCK FACE = PART LG + 5 MM)

N1 G21 TO0100 Metric units and Tool 1 - no wear offset

N2 G96 S100 MO3 CSS at 100 m/min - CW spindle rotation

N3 GO0 X53.0 z0 T0101 MO8 Start position for face cut + wear offset + coolant
N4 GO1 X-1.8 FO.1 Face just below centerline at 0.1 mm/rev feedrate
N5 GO0 z3.0 Clear-off face - Z-axis only - by 3 mm

N6 G42 X51.0 X-start for G71 cycle and tool radius offset

N7 G65 P8021 A23.0 B44.0 C24.0 D46.0 R3.0 (PIN-001 MACRO ARGUMENTS)

N8 GO0 G40 X100.0 z50.0 T0100 MO9 Rapid to tool change position + cancellations

N9 MO1l Program stop (optionally - next tool expected)
Other tool(-s) may follow

08021 (PIN-XXX MACRO PROGRAM) Four pins in the family are covered by this macro
N101 G71 U2.5 R1.0 G71 - 2.5 mm cutting depth, 1.0 retract

N102 G71 P103 Q108 Ul.5 W0.125 F0.3 G7I - N103 to N108 contour - XZ stock - 0.3 mm/rev
N103 GO0 X[#3-2*1-2*3] Calculated X-diameter for chamfer - 'A’

N104 GOl X#3 Z-1.0 F0.1 Cut front chamfer at 0.1 mm/rev - 'B’

N105 Z-#1 R#18 FO0.15 Cut small dia + inner radius at 0.15 mm/rev - 'C’
N106 X#7 R-2.0 Cut face and outer radius - 'D'’

N107 Z-[#2+3.0] Cut large diameter 3 mm past part length - 'E’
N108 X54.0 F0.3 Clear-off stock dia - X-axis only - by 2 mm - 'F’
N109 G70 P103 Q108 sS125 G70 finish contour at 125 m/min

N110 M99 End of macro

%

Any legitimate block numbers are allowed, as long as there are no duplicates in the same pro-
gram (subprograms and macros included). Keep in mind that the P and Q addresses in the cycles
indicate block numbers actually used in the contour program.

Final Version

The purpose of this presentation was to develop a basic macro program for a family of similar
parts. Without a doubt, many additions to the macro can easily be made, depending on the exact
nature of the existing job. Tolerances and surface finish may play a great role in the program de-
velopment, as may some specific requests by the customer. These are all easy to implement. The
main objective was to introduce a skilled CNC programmer into the world of macros.

One significant change that can be made - and it can also show how flexible macros are - is to
make it easier to change machining from one part to another.

In the macro 08021, the only way to change the assignments of variables for different pins is in
the block N7 - the G65 block. This is quite a common method, but not the best method. Much
better method is to include all four definitions into a single main program, and change just one
variable number (at the program top) to select the required part (pin type). This objective is easy
to achieve by including the four definitions along with the IF function in the main program:

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

FAMILY OF SIMILAR PARTS 219

(PIN-001 TO PIN-004 SERIES - MAIN PROGRAM - MASTER)
(X0Z0 - CENTERLINE AND FRONT FINISHED FACE)
(BAR PROJECTION FROM CHUCK FACE = PART LG + 5 MM)

Nl #33 =1 PART SELECT: 1=001 2=002 3=003 4=004
(= e e e e)
N2 #30 = #4006 Save current units of dimensioning (G20 or G21)
N3 IF [#33 GT 4] GOT0991 ERROR (alarm) if part number is greater than 004
N4 IF [#33 LT 1] GOT0992 ERROR (alarm) if part number is less than 001
N5 G21 TO0100 Metric units and Tool 1 - no wear offset

N6 G96 S100 MO3 CSS at 100 m/min - CW spindle rotation

N7 GOO X53.0 z0 T0101 MO8 Start position for face cut + wear offset + coolant
N8 GO1 X-1.8 FO.1 Face just below centerline at 0.1 mm/rev feedrate
N9 GO0 z3.0 Clear-off face - Z-axis only - by 3 mm

N10 G42 X51.0 X-start for G71 cycle and tool radius offset

N1l IF [#33 EQ 1] GOTO1l5 #33 =1 ... selects PIN-001

N12 IF [#33 EQ 2] GOTO1l7 #33 = 2 ... Selects PIN-002

N13 IF [#33 EQ 3] GOTO1l9 #33 = 3 ... selects PIN-003

N14 IF [#33 EQ 4] GOTO21 #33 = 4 ... selects PIN-004

N15 G65 P8021 A23.0 B44.0 C24.0 D46.0 R3.0 (PIN-001 MACRO ARGUMENTS)
N16 GOTO22 Bypass next three macro calls

N17 G65 P8021 A25.0 B46.0 C28.0 D48.0 R2.0 (PIN-002 MACRO ARGUMENTS)
N18 GOTO22 Bypass next two macro calls

N19 G65 P8021 A19.0 B45.0 C21.0 D47.0 R4.0 (PIN-003 MACRO ARGUMENTS)
N20 GOTO22 Bypass next macro calls

N21 G65 P8021 Al16.0 B40.0 C25.0 D49.0 R3.0 (PIN-004 MACRO ARGUMENTS)
N22 GO0 G40 X100.0 z50.0 T0100 M09 Rapid to tool change position + cancellations

N23 GOTO0998 Bypass error messages if all OK
(===)
N991 #3000 = 991 (PART NUMBER TOO LARGE)
N992 #3000 = 992 (PART NUMBER TOO SMALL)
N998 Gi#30 Restore previous units of dimensioning (G20 or G21)
N999 MO1 Program stop (optionally - next tool expected)

Other tool(-s) may follow
08021 (PIN-XXX MACRO PROGRAM) Four pins in the family are covered by this macro
N101 G71 U2.5 R1.0 G71 - 2.5 mm cutting depth, 1.0 retract
N102 G71 P103 Q108 Ul.5 W0.125 F0.3 G7I - NI03 to N108 contour - XZ stock - 0.3 mm/rev
N103 GO0 X[#3-2*1-2*3] Calculated X-diameter for chamfer - 'A’
N104 GOl X#3 Z-1.0 FO.1 Cut front chamfer at 0.1 mm/rev - 'B’
N105 z-#1 R#18 FO0.15 Cut small dia + inner radius at 0.15 mm/rev - 'C’
N106 X#7 R-2.0 Cut face and outer radius - 'D'’
N107 Z-[#2+3.0] Cut large diameter 3 mm past part length - 'E’
N108 X54.0 F0.3 Clear-off stock dia - X-axis only - by 2 mm - 'F’
N109 G70 P103 Q108 S125 G70 finish contour at 125 m/min
N110 M99 End of macro
%

The definition of variable #33 has been visually enhanced to show the block where the selection
of the active part will take place.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

220 Chapter 19

Macro Improvements

Every macro can always use some additional improvements and changes that make it stronger
and more reliable. Some changes could be considered standard, others depend largely on the ac-
tual job. The macro development presented in this chapter is a thorough demonstration of macro
development and presents a good overall look. It does not pretend to be the best example or even
the only example possible. Feel free to change the macro to any unique conditions.

What possible improvements could be added to this or any macro? Not necessarily applicable to
the macro just demonstrated, here is a summary of typical macro features that should help in the
development:

1. Safety considerations

2. Careful selection of variable assignments
3. Internal calculations rather than definitions
4. Included messages and alarms

5. Quality documentation

One rule of computer programming for any application, is that the first and main objective is to
develop the basic program core. Achieve the goal in as short code as possible. Forget the 'bells
and whistles', forget the 'beautification' of the program. All that can - and should - be added only
after the main objective has been met. What is the point of making a bad program look good?

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACROS FOR MACHINING

Macros can be used for many different purposes. The previous chapter covered the topic of
macro development for a family of similar parts. The current chapter extends the subject and
covers a development of various macros for general machining operations rather than a family of
parts. Repetitive and predictable machining operations are one of the most common applications
of a parametric program. All parametric macros provided in this chapter have many more addi-
tional features than the similar ones often found on various web sites or internet forums.

Study ALL macros provided in this chapter - each example presents a new technique that can be
used in programming of other macros. Using a specific technique used in one macro and adapting
it to another macro will increase the macro usefulness and flexibility.

There are virtually limitless possibilities for macro applications as parametric programs and
only a small selection is offered here. The purpose of these examples is to show actual samples of
a macro code for several very useful types of machining. Study the logic of each macro for the
programming techniques used and follow the complete design. The explanations with each exam-
ple will serve as a guide to a macro development, regardless of the final goal.

All macros are provided for training purposes only with no guarantees !

Angular Hole Pattern - Version 1

One of the most common applications - and one of the simplest - is a linear patter of holes, with
an equal distance between holes. The objective of this parametric macro is to create a toolpath for
any drilling operations applied to a pattern of holes arranged in a line. The drawing in Figure 31 is
an example of this type of pattern. Program zero is at lower left corner and top of the part.

Figure 31

%\|\ S Drawing example of a typical
angular hole pattern - version 1

for the first hole are given, along

/ S In this application, the coordinates
with the pattern angle

10

13 @4 - 9 EQSP HOLES THRU

Material: Aluminum plate 100 x 75 x 12 mm

221

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

222 Chapter 20

When considered with similar drawings, this example provides all data needed to set up macro
framework. It covers the conditions and restrictions, in which the macro application will be valid.
For the educational purposes, this first application will be relatively simple (but definitely useful).
Many programming techniques used in this macro will repeat in subsequent examples, with added
features. First, evaluate the various self-imposed conditions and constrains towards the set goal:

(1 All holes are spaced equally within the pattern EQSP holes

(1 Any number of holes is acceptable - minimum of two holes within machine capabilities
(1 The distance between the holes must be known pitch of holes

(1 Any pitch between holes is acceptable within machine capabilities
[(d The location of the first hole must be known as XY coordinates

(1 Any angle between the first hole and the last hole must be known establishes direction

Once the conditions have been established and applied to an example, like the one in Figure 31,
the most important first step has been completed. When evaluating a single drawing, always think
of all other possibilities that may exist in similar drawings. For example, is the pattern of holes
horizontal or vertical, is it rotated in the opposite direction, should the macro still be able to han-
dle this pattern? Logically, there is no fundamental difference between one orientation and an-
other. Always consider all features, including the angle, even if the angle is zero. Zero degree
angle will define the horizontal orientation to the right of the first hole (east direction). A one-hun-
dred-eighty degree angle defines the horizontal orientation to the left of the first hole (west direc-
tion). In the macro, the defined angle controls the orientation of the linear hole pattern. Based on
all these considerations, including the self-imposed restrictions and other decisions, a common
macro specific drawing will be necessary, applicable to all similar patterns - Figure 32:

MACRO 08101

o Q::‘:\'\\

/ \ 0 Q (#7)

A (#1)
Angular hole pattern macro - Version 1

f VAR | # Description
H | 11| Number of EQSP holes

17 | Spacing between holes

Start hole XY location o .
called in the main program A | 1 | Angular direction of cutting

G65 P8101 H- Q- A-

Figure 32

Variable data for angular pattern of holes - Version 1 - Macro 08101

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACROS FOR MACHINING 223

Variable Data for Angular Hole Pattern

From the given conditions, it is easy to establish the required variable data and define the conve-
nient argument assignments for them, as shown in Figure 32. For reasons of simplicity in this first
macro, the absolute XY location of the start hole has been left out. In the examples that follow,
such a location will also be part of the macro, if required.

1 Number of EQSP holes ... assigned letter H (variable assignment #11)
d Spacing between the holes (pitch) ... assigned letter Q (variable assignment #17)
1 Angular direction of cutting ... assigned letter A (variable assignment #1)

In the main program, the process flow will be very similar to any standard program that calls a
subprogram. A fixed cycle will be used to drill the first hole at its absolute location, change to in-
cremental mode and repeat the cycle for all remaining holes.

00021 (MAIN PROGRAM)

N1l G21 Metric mode

N2 G90 GOO G54 X13.0 Y10.0 sS800 MO03 First motion block with spindle speed
N3 G43 225.0 HO1 MO8 Tool length offset with clearance above
N4 G99 G81 R2.5 Z-14.7 F150.0 Hole #1 machined at current location
N5 G65 P8101 A35.0 H9 Q11.5 Macro call with assignments

N6 G90 G80 Zz25.0 M09 Retract above work

N7 G28 Z25.0 MO5 Return to machine zero

N8 MO1l End of current tool

08101 (ANGULAR HOLE PATTERN MACRO - VERSION 1)

#11 = #11-1 Change number of holes to number of spaces
#24 = #17*COS[#1] Calculation of the X-increment

#25 = #17*SIN[#1] Calculation of the Y-increment

G91 X#24 Y#25 L#l1l Increment L-times (K-times for Fanuc 16/18/21)
M99 End of macro

%

The macro occupies two variables undefined in the macro call (#24 and #25). Although cor-
rect, any storage of values into separate variables takes away memory resources. There is no need
to define separate variables, because the calculation they provide will be used only once. As a
better variation of the O8101 macro - without the two variables, consider this method:

08101 (ANGULAR HOLE PATTERN MACRO - VERSION 1)

#11 = #11-1 Change number of holes to number of spaces
G91 X[#17*COS[#1]] Y[#17*SIN[#1]] L#11 New location and increment (L or K)

M99 End of macro

%

That concludes the development of a simple, yet quite versatile, first macro application for ma-
chining operations. With this macro, any row of equally spaced holes with a given angle can be
programmed very easily into any direction, based on the given first hole location and the angle
definition (measured from zero degrees). Many improvements can be added to this macro, as al-
ready shown before, and as also shown in the several macros that follow.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

224 Chapter 20

Angular Hole Pattern - Version 2

Just because the word ‘angle’ appears in the definition, it does not mean the actual angle is al-
ways defined in the drawing. In fact, there is another common method of dimensioning an angular
hole pattern. Rather than using the coordinates of the first hole and a specified angle, it uses coor-
dinates for the first hole and the distance between the first and the last holes in the pattern, with no
angle definition. Even if the drawing shows the absolute coordinates of the second hole, it is easy
to find the distance between holes. Which drafting method is used depends on the engineering in-
tent - what is the purpose of the design. Of course, any skilled CNC programmer can change one
method to the other, but there is always a risk of some rounding error that could be significant.
The solution? Another macro. The typical part example drawing is shown in Figure 33.

6 Figure 33

Drawing example of a typical
@ angular hole pattern - version 2

- In this application, the coordinates
for the first hole are given, along
@ with the X and Y distance between
the end holes

43

14

12\ /85 - 6 EQSP HOLES THRU

Material: Aluminum plate 100 x 75 x 12 mm

When developing macros where the differences are small, as in these examples, it is a good idea
to maintain as many variable assignments as possible. For example, the number of holes can still
use the H assignment (#11).

Note the difference in drawing data between Version I and Version 2 - there are two distances
but no angle or space between holes. The provided data must be part of the variable assignments,
but the spacing between holes will be calculated inside the macro. In this version, the location of
the first hole will be defined in the main program, but different two variables will be the X-length
and the Y-length of the pattern:

(1 Length of the pattern along X-axis ... assigned letter U (variable assignment #21)
(1 Length of the pattern along Y-axis ... assigned letter V (variable assignment #22)
(d Number of EQSP holes ... assigned letter H (variable assignment #11)

The macro can be improved in number of ways. As only one tool is shown in the example, it
may not be convenient to repeat the macro exactly the same for two or even three tools. Even the
drilling cycle can be built in the macro, depending on the exact conditions at the time of program-
ming. This macro is very similar to the previous one, but can also include a few extra features that
can easily be adapted to any macro. The variables are visually defined in Figure 34.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACROS FOR MACHINING

225

- U#21)
/

0L
0% |

Start hole XY location
called in the main program

MACRO 08102

Angular hole pattern macro - Version 2
VAR | # Description

U |21 | Length of pattern along X

22 | Length of pattern along Y
H |11 | Number of EQSP holes

G65 P8102 U- V- H-

Figur

e34

Variable data for angular pattern of holes - Version 2 - Macro 08102

00022 (MAIN PROGRAM)

N1
N2
N3
N4
N5
N6
N7
N8

081
#11
#24
#25
G91
M99
%

G21

G90 GOO G54 X12.0 Y14.0 S775 MO03
G43 Z25.0 HOl1 MO8

G99 G81 R2.5 Z-15.0 F150.0

G65 P8102 U76.0 v43.0 H6

G90 G80 225.0 MO9

G28 225.0 MO5

MO1

Metric mode

First motion block with spindle speed
Tool length offset with clearance above
Hole #1 machined at current location
Macro call with assignments (Ut V+)
Retract above work

Return to machine zero

End of current tool

02 (ANGULAR HOLE PATTERN MACRO - VERSION 2)

= #11-1
#21/#11
#22/4#11
X#24 Y#25 L#ll

Change number of holes to number of spaces
Calculation of the X-increment

Calculation of the Y-increment

Increment L-times (K-times for Fanuc 16/18/21)
End of macro

In typical machining, the drilling tool would be preceded by a spot drilling or center drilling op-
eration, but the definition of the macro and its call would remain the same.

These two macros have demonstrated that a job that could take a while to program manually,
can be done literally in seconds when using an existing macro. The following examples will add
some extra features, which can also be added to the first two macros.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

226 Chapter 20

Frame Hole Pattern

Frame hole pattern is quite common in many machine shops, and consists of a series of equally
spaced holes, forming a rectangular pattern. In effect, this pattern consists of four sets of holes in
an angular arrangement, so the first macro (O8101) can be used - four times. However, a frame
pattern is more efficient and - if developed correctly - prevents double cutting of the corner holes,
which can easily happen using other methods. The macro to develop is a macro that defines such a
pattern of holes, starting at the lower left hole of the rectangle, then continuing around the frame
in the CW or CCW direction. Again, certain decisions, conditions and restrictions have to be im-
posed first, based on the type of work.

Figure 35 represents a typical drawing for a frame hole pattern.

g4 THRU

Frame hole pattern - definitions

:
;
5

95
OO0
5 EQSP HOLES

10 16

Material: Aluminum plate 100 x 75 x 12 mm

Based on the typical pattern shown, study carefully what features have been considered. Note
that the equal spacing between holes is (or could be) different for the X-axis and the Y-axis. This
reality has to be taken into consideration. Based on the example drawing, as well as on the result
of the necessary thinking process, the following features have been employed in the macro pre-
sented here:

(4 All holes are spaced equally within the pattern pitch in X can be different from the pitch in Y

(1 Any number of holes is acceptable machine permitting - 2 min per row or column
(1 Distance between holes must be known pitch along X and Y (both positive)

(4 Any pitch between holes is acceptable within machine capabilities

1 Location of the first hole must be known XY coordinates

[First hole is the lower left corner of the pattern must be known

(d Machining direction is CCW X+ Y+ X-Y-

In the macro, the key element will be to prevent cutting any corner hole twice. That can be
achieved by programming LO or KO in the fixed cycle called. From these selected conditions, the
assignments in the G65 macro call block can now be defined.

Figure 36 shows the visual definition of all required variables.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACROS FOR MACHINING 227

MACRO 08103

|t

U (#21)

| (#4)

N

T Frame hole pattern macro
@ ~ VAR | # Description
J#) | | % X |24 | Lower left hole X-coordinate
@ > Y |25 Lower left hole Y-coordinate
} l U |21 | Number of horizontal holes
V |22 | Number of vertical holes
X(#24) Y (#25) I | 4 | EQSP horizontal pitch
J | 5 | EQSP vertical pitch

G65 P8103 X- Y- U- V- I- J-

Figure 36

Variable data for frame pattern of holes - Macro 08103

In this example, the absolute location of the X and Y axes have been added, making the user in-
put a little bit longer, but the resulting macro that is much more flexible. Understanding how this
initial location is used in the macro (any macro), presents an opportunity to upgrade the previous
macro examples for the angular hole pattern (if it provides benefits). The direction of machining
around the pattern periphery is strictly arbitrary and has no real impact on actual machining. At
this point, the variables can be assigned - again, using some logical and convenient method.

Variable Data for Frame Hole Pattern

The following pattern features will be defined:

(J Lower left hole absolute X-location ... assigned letter X (variable #24)
(1 Lower left hole absolute Y-location ... assigned letter Y (variable #25)
(3 Number of holes - along the X-axis ... assigned letter U (variable #21)
(3 Number of holes - along the Y-axis ... assigned letter V (variable #22)
(1 Spacing between holes (X-pitch) ... assigned letter | (variable #4)
(1 Spacing between holes (Y-pitch) ... assigned letter J (variable #5)

The implementation of the suitable fixed cycle must be called in the main program, with the
necessary data (X and Y may be omitted), but it must be programmed with the LO or KO mode
(depending on the control system). The programming is based on the program zero being at the
lower left corner, and the top of part.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

228

Chapter 20

00023 (MAIN PROGRAM)
N1 G21
N2 G90
N3 G43

GO0 G54 X0 YO s800 MO3
Z225.0 HO1 MO8

N4 G99 G81 R2.5 Z-14.7 F150.0 LO
P8103 X10.0 Y9.5 U6 V5 I16.0 J14.0

N5 G65
N6 G80
N7 G28
N8 MOl

225.0 M09
Z25.0 MO5

Metric mode

Any X and/or Y motion may be included
Tool length offset + clearance above
No machining but cycle data memorized
Macro call with assignments

G90 omitted on purpose (see macro)
Return to machine zero

End of current tool

08103 (FRAME HOLE PATTERN MACRO)

#10 = #4003

IF[#4 LE 0] GOT09101

IF[#5 LE 0] GOT09101

IF[#21 LT 2] GOT09102

IF[#21 NE FUP[#21]] GOT09103
IF[#22 LT 2] GOT09102

IF[#22 NE FUP[#22]] GOT09103
G90 X#24 Y#25

#33 = #21-1

WHILE [#33 GT 0] DOl
G91 X#4

#33 = #33-1

END1

#33 = #22-1

WHILE [#33 GT 0] DO1
Y#5

#33 = #33-1

END1

#33 = #21-1

WHILE [#33 GT 0] DOl
X-#4

#33 = #33-1

END1

#33 = #22-1

WHILE [#33 GT 1] DOl
Y-#5

#33 = #33-1

END1

GOTO09999

N9101 #3000
N9102 #3000
N9103 #3000 =
N9999 G#10
M99

%

101 (HOLE SPACING TOO SMALL)
102 (TWO HOLES MINIMUM REQUIRED)
103 (DECIMAL POINT NOT ALLOWED)

Store current setting of G90 or G91

Alarm if I not defined (spacing between holes in X)

Alarm if J not defined (spacing between holes in Y)

Alarm if U less than 2 (minimum of 2 horizontal holes)
Alarm if U uses a decimal point (number of horizontal holes)
Alarm if 'V less than 2 (minimum of 2 vertical holes)

Alarm if V uses a decimal point (number of vertical holes)
Lower left corner hole = the first hole of the pattern
Number of spaces horizontally (positive)

Start the loop for positive horizontal holes

Incremental + complete bottom row (to the right in X+)
Update counter

End of loop

Number of space vertically (positive)

Start the loop for positive vertical holes

Complete right column (up in Y positive)

Update counter

End of loop

Number of spaces horizontally (negative)

Start the loop for negative horizontal holes

Complete bottom row (to the left in X negative)

Update counter

End of loop

Number of spaces vertically (negative)

Loop for vert. neg. holes - see condition - no first hole!
Complete left column (down in Y negative)

Update counter

End of loop

Bypass all alarms if data input in G65 macro call is correct
Generates alarm number 101 or 3101
Generates alarm number 102 or 3102
Generates alarm number 103 or 3103
Original setting of G90 or G91 restored

End of macro

Study the G65 macro statement - the input values are from the drawing in Figure 35:

N5 G65 P8103 X10.0 Y9.5 U6 V5 I16.0 J14.0

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACROS FOR MACHINING 229

There are some variable entries in the macro call statement that use a decimal point, and there
are others that do not. These are the two available options. Since the variables U6 and V5 are used
for counting of holes only (this type of variable is called the counter in a macro), they can be pro-
grammed without a decimal point, using the integer format input. Variables X10.0 Y9.5 116.0
and J14.0 are all dimensional variables and the decimal point must be programmed, using the real
number input. Otherwise, X10 will be interpreted as X0.010, Y95 as Y0.095, 116 as 10.016, and
J14 as J0.014 - this should be common knowledge from the basic CNC training.

& Reference notes:

An integer input means that the decimal point is not available and/or not required, such as for
counting the repeats of certain activity within the macro. Real number input means that the vari-
able value defined in the G65 statement requires a decimal point, or at least can use one, if neces-
sary. In this case, the decimal input is critical, for example, to represent a fractional number in a
decimal format. Real number are not normally used as counters.

Bolt Hole Circle Pattern

Both previous examples have shown how the logical flow of a relatively simple macro is estab-
lished. These basic concepts are extremely important, since they will be used many times in one
form or another in almost every macro. In effect, they will become the foundation of a successful
macro development for more complex applications. This current macro example of a bolt hole cir-
cle pattern is quite simple in one way, yet it could be very special in so many other ways and for
only one reason - it offers a great amount of flexibility. A similar macro for an arc hole pattern
follows. Programming a bolt hole circle pattern using the manual method is not a difficult work,
but it could be time consuming and certainly subject to errors. Some programmers use a
stand-alone utility, other may develop a spreadsheet program for bot hole circle. In CNC, using a
verified macro for this task is not only convenient, it is also economical in terms of productivity.

Figure 37 shows a typical drawing of a bolt hole pattern. There are six equally spaced holes
within 360°, and the first hole is located at a given angle.

28 THRU _
6 EQSP HOLES Figure 37

Example of a drawing for a typical
bolt hole circle pattern

N

\

49 8cp éﬁ% @;
T

375
@/
Q

50

Material: Aluminum plate 100 x 75 x 12 mm

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

230 Chapter 20

The bolt hole pattern is very likely the most common example used in various macro tutorials -
and there is a very valid reason for it. Just about every CNC programmer, even a beginner, will
encounter a bolt hole circle pattern sooner or later, while programming CNC mills and machining
centers. Every CNC machinist assigned for milling applications has probably had the opportunity
to utilize a bolt hole circle at least once. What makes the bolt hole circle pattern so special? Before
reading further, evaluate the sample drawing of a bolt hole circle pattern, illustrated in Figure 37.

A true pattern of holes has to include several critical features that are present in every drawing
in this pattern group. In case of a bolt hole pattern, there are at least three critical features that are
always present but may vary from one drawing to another, depending on the engineering design:

(1 Location of the bolt hole center ... X50.0Y37.5 in the example
(d Bolt Circle Diameter = Pitch Circle Diameter (BCD or PCD) ... 49 mm in the example
(1 Number of equally spaced holes ... uses EQSP abbreviation

Another important feature of the macro design is the angular position of the first hole. Most pat-
terns of this kind have the first hole aligned at the 'three o’clock position', which is in itself an an-
gular position - at zero degrees. A bolt hole pattern macro can be designed in such a way, that the
first hole location is always assumed to be at zero degrees. This design makes the macro a bit eas-
ier to develop, but also provides rather limited applications. Including the angle of the first hole in
the macro call - even if it is at zero degrees - greatly enhances the macro flexibility and its useful-
ness.

The basic concept of this design should be quite easy to understand - the actual development fol-
lows the initial logical thinking. With more features added to the macro, the programming process
will inevitably become more involved and more complex and has to be strictly controlled. The
most important benefit of such an approach is that the extra effort will produce a very useful
macro that can be used for a variety of bolt circle designs. Such a macro can literally save hun-
dreds of programming hours when the right applications are present.

From this detailed description of the approach to macro development, at least two methods of
bolt hole circle macro development can be identified:

(d A macro that will make a fixed bolt circle pattern only ... a simple approach
(A macro that will add flexibility to the bolt circle pattern ... a more advanced approach

In either case, there are the usual - and always necessary - decisions to be made, those that re-
late to all basic conditions, restrictions and other design requirements. The programmer always
makes these decisions before writing a single block of the macro. For the bolt hole circle pattern
illustrated, the corresponding macro will be based on these conditions, restrictions and decisions:

(d Bolt hole diameter (pitch diameter) must always be known, along with its absolute center coordinates
All bolt holes are spaced equally within the bolt circle pattern (angular measurement)

Any number of holes is acceptable (within machine capabilities) - minimum of two

The angular location of the first hole can be anywhere from zero degrees (3 o'clock position)
Direction of machining is from the first hole into the CCW direction (arbitrary decision)

Macro must be available to any fixed cycle selection

| I T I Iy

Thorough initial planning is essential - it may be very difficult, even impossible, to add a feature
or two to an existing macro later on.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACROS FOR MACHINING 231

Additional advanced conditions can be applied to the macro design, if required:

(1 Any number of holes is acceptable (within machining capabilities) - including the minimum of one

(1 Initial holes can be skipped, resulting in an arc hole pattern - rather than a full circle hole pattern
& Reference note:

Arc pattern is defined as a portion of a circle pattern. Typically, it is defined by its first hole and
the angular increment between equally spaced holes. To see the difference, compare the arc pat-
tern capabilities of the bolt hole circle pattern (this section) and the arc hole pattern (next section).

Variable Data for Bolt Hole Circle Pattern

The following bolt hole circle pattern features will be defined - Figure 38:

d Diameter of the full bolt hole circle ... assigned letter W (variable #23)

1 Absolute X-location of the center ... assigned letter X (variable #24)

1 Absolute Y-location of the center ... assigned letter Y (variable #25)

(1 Number of EQSP holes ... assigned letter H (variable #11)

[Angle of the first hole ... assigned letter A (variable #1)

1 Hole number to start with (default=1) ... assigned letter S (variable #19)

Bolt hole circle pattern - definitions MACRO 08104

n=n+1 VAR | # Description

24 | Absolute center location in X

25 | Absolute center location in Y

23 | Bolt circle diameter
n/a| Bolt circle radius (#23/2)
11 | Number of EQSP holes
1 | First hole angle from 0°
n/a| Angle between holes (360/#11)

%
Y (#25) —\—X

W o> T|H|S|<|X

19 | Hole number to start at

X and Y coordinates - any hole:
X=cos((n-1)*B+A)*R + #24
Y =sin((n-1) *B + A) * R + #25

n=1 for Hole 1, n=2 for Hole 2, etc.

G65 P8104 X- Y- W- H- A- S-

- W (#23) — |

n = Hole counter (CCW from 0°)

Figure 38

Assignment of variables for a typical bolt hole circle pattern - Macro 08104

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

232 Chapter 20

Although the concept of this macro may need some effort to understand it thoroughly, a few
points may help. First, note the input of the BCD - the Bolt Circle Diameter - internally, in the
macro, the diameter is irrelevant - it is the radius that is needed within the macro for calculations.
However, it is the diameter value that is the normal way of dimensioning the drawing, so it should
be the diameter value that is input into the G65 variable definitions (variable R in the above figure
is actually not used - instead, the variable W is redefined, to save memory resources of the control
system. Another variable that is necessary for calculations (but not defined as an assignment) is
identified as B in the illustration only, and nested internally in the macro.

For final reference, finished top of the part is program zero for the Z-axis (Z0). X0YO is located
at the lower left corner (but could be anywhere). The following main program reflects the bolt cir-
cle drawing illustrated in Figure 37:

00024 (MAIN PROGRAM)

N1 G21 Metric mode

N2 G90 GOO G54 X0 YO S1200 MO3 First motion block + spindle speed

N3 G43 z10.0 HO1l MO8 Tool length offset + clearance above

N4 G99 G82 R1.0 z-15.9 P300 F225.0 LO Fixed cycle call data - no machining (or K0)
N5 G65 P8104 X50.0 Y37.5 W49.0 H6 Al.0 S1 Macro call with assignments - full circle
N6 G80 z10.0 MO9S Retract above work

N7 G28 z10.0 MO5 Return to machine zero

N8 MO1 End of current tool

%

08104 (BOLT HOLE CIRCLE MACRO) Macro number and description

#10 = #4003 Store current setting of G90 or G91
IF[#23 LE 0] GOTO09101 Bolt circle diameter to be greater than zero
IF[#11 NE FUP[#11]] GOT09102 No fractions allowed for number of holes
IF[#11 LE 0] GOTO09103 Minimum number of holes is one

IF[#19 EQ #0] THEN #19 =1 Start hole number = 1 (one) if not specified
IF[#19 NE FUP[#19]] GOT09102 No fractions allowed for start hole number
IF[#19 LT 1] GOT09104 Start hole number must be one or higher
IF[#19 GT #11] GOTO09105 Start hole number must be less than all holes
#23 = #23/2 Change diameter of bolt circle to radius
WHILE[#19 LE #11] DO1 Start loop for holes

#30 = [#19-11*360/#11+#1 Calculate current hole angle
X[COS[#30]*#23+#24] Y[SIN[#30]*#23+#25] Calculate current X and Y hole location
#19 = #19+1 Update counter for the loop

END1 End of loop

GOT09999 Bypass alarm messages

N9101 #3000=101 (DIA MUST BE GT 0) Alarm number 101 or 3101

N9102 #3000=102 (HOLES DATA MUST BE INTEGER) Alarm number 102 or 3102
N9103 #3000=103 (ONLY POSITIVE NUM OF HOLES) Alarm number 103 or 3103
N9104 #3000=104 (START HOLE MUST BE INTEGER) Alarm number 104 or 3104
N9105 #3000=105 (START HOLE NUMBER TOO HIGH) Alarm number 105 or 3105

N9999 G#10 Restore modal G-code
M99 End of macro
%

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACROS FOR MACHINING 233

One of the more interesting features of the macro is the use of a default value (6th macro block):

IF[#19 EQ #0] THEN #19 =1 Start hole number = 1 (one) if not specified

In the G65 variable assignment is the variable S, assigned value of 1, i.e., S1. This variable
controls the hole number at which the macro starts. For a full circle hole pattern, the variable will
always be 1, however, for an arc pattern only, it will be greater than 1. Since bolt circle patterns
are more common than arc patterns, the macro provides a default - if the assignment of variable S
is not specified in the G65 macro call, the value of one will be automatically supplied by the above
statement within the macro. Note that not all controls accept the IF-THEN argument, in which
case the more cumbersome /F and GOTOn combination will have to be used.

To summarize this default feature, both following G65 statements will achieve a full bolt circle
pattern, starting at the first hole:

N5 G65 P8104 X50.0 Y37.5 W49.0 H6 A1.0 S1 Macro call with assignments - full circle
N5 G65 P8104 X50.0 Y37.5 W49.0 H6 Al.0 Macro call with assignments - full circle
The macro itself can be used in a very flexible way. With an innovative and creative use of the
H, A, and S variables, any hole can be the first hole, any number of holes can be specified, pro-

viding they are located on a bolt circle. A bolt circle with an even number of equally spaced holes
offers more flexibility than a bolt circle with an odd number of equally spaced holes.

Arc Hole Pattern

Certain hole machining applications do not require a full bolt hole circle pattern, just a part of it.
This arc hole pattern of equally spaced holes along an arc is very similar to the bolt hole circle
pattern, but does not cover the full 360° circle. The angular increment between holes is provided
in the drawing and must always be part of the macro call assignments.

Figure 39 illustrates a typical arc hole pattern:

@23 THRU

5 EQSP HOLES Figure 39

Example of a drawing for a typical
arc hole pattern

25

Material: Aluminum plate 100 x 75 x 12 mm

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

234 Chapter 20

In comparison, the bolt hole macro in the previous section can skip certain holes, based only on
the 'hole number to start with' (assignment S=#19). It will always skip holes beginning at the first
hole of the pattern. While useful for many practical machining applications, the macro structure
does not allow increased flexibility in controlling the actual hole pattern. The arc hole pattern
macro has been designed specifically for machining patterns of holes with the given angular incre-
ment that forms a pattern of holes in the range that is less than 360° (the variable assignment S is
not required in this case).

Variable Data for Arc Hole Pattern

The following arc pattern features will be defined:

(1 Diameter of the partial bolt hole circle ... assigned letter W (variable #23)
(1 Absolute X-location of the center ... assigned letter X (variable #24)
(1 Absolute Y-location of the center ... assigned letter Y (variable #25)
(1 Number of EQSP holes ... assigned letter H (variable #11)
(1 Angle of the first hole ... assigned letter A (variable #1)
d Increment angle between holes ... assigned letter | (variable #4)

& SUGGESTION: Study both macros 08104 and 08105 to the last detail

MACRO 08105

Arc hole pattern - definitions

VAR | # Description

24 | Absolute center location in X

25 | Absolute center location in Y
Y (#25) —

23 | Bolt circle diameter
n/a| Bolt circle radius (#23/2)
11 | Number of EQSP holes

> I | 0S| <X

1 | First hole angle from 0°

X (#24)

I 4 | Angle between holes

X and Y coordinates - any hole:
X =cos((n-1) * 1 + A) *R + #24
Y =sin((n-1) * I + A) * R + #25
n = Hole counter (CCW from 0°) n=1 for Hole 1, n=2 for Hole 2, etc.

G65 P8105 X- Y- W- H- A- I-

- W (#23) ——

Figure 40

Assignment of variables for a typical arc hole pattern - Macro 08105

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACROS FOR MACHINING

235

00025 (MAIN PROGRAM)

N1
N2
N3
N4
N5
N6
N7
N8

G21
G90
G43
G99
G65
G80
G28
MO1

GO0 G54 X0 YO0 sS1200 MO03

210.0 HO1 MO8

G82 R1.0 Z-14.4 P300 F225.0 LO

P8105 X37.5 ¥25.0 W49.0 H5 A10.0 I24.0
Z210.0 MO9

Z210.0 MO5

08105 (ARC HOLE PATTERN MACRO)

#10

IF[#24 EQ #0]
IF[#25 EQ #0]
IF[#23 EQ #0]
IF[#11 EQ #0]

#4003
THEN #24 = 0
THEN #25 = 0
GOT09101
GOT09102

IF[#1 EQ #0] GOT09103
IF[#4 EQ #0] GOT09104
IF[#23 LE 0] GOT09105
IF[#11 NE FUP[#11]] GOTO9106
IF[#11 LE 0] GOTO9107

#23

#23/2

#19 = 1
WHILE[#19 LE #11] DOl

#30 = [#19-1]*#4+#1
X[COS[#30]1*#23+#24] Y[SIN[#30]*#23+#25]
#19 = #19+1

END1

GOT09999

N9101 #3000=101 (NO DIAMETER)

N9102 #3000=102 (NO NUMBER OF HOLES)
N9103 #3000=103 (NO HOLE 1 ANGLE)

N9104 #3000=104 (NO ANGLE INCREMENT)
N9105 #3000=105 (DIA MUST BE GT 0)
N9106 #3000=106 (INTEGER INPUT REQUIRED)
N9107 #3000=107 (ONLY POSITIVE NUMBER)
N9999 G#10

M99

%

Metric mode

First motion block + spindle speed

Tool length offset + clearance above

Fixed cycle call data - no machining (or K0)
Macro call with assignments - ARC
Retract above work

Return to machine zero

End of current tool

Macro number and description

Store current setting of G90 or G91

If X-assignment is missing, X=0.0

If Y-assignment is missing, Y=0.0

ERROR if DIAMETER is missing

ERROR if NUMBER OF HOLES is missing
ERROR if HOLE 1 ANGLE is missing
ERROR if ANGLE INCREMENT is missing
Arc pattern diameter to be greater than zero
No fractions allowed for number of holes
Minimum number of holes is one

Change diameter of the arc pattern to radius
Start counter of holes

Start loop for holes

Calculate current hole angle

Calculate current X and Y hole location
Update counter for the loop

End of loop

Bypass alarm messages

BCD not specified

Number of holes not specified

First hole angle not specified

Increment angle not specified

BCD must be greater than zero

Number of holes cannot have decimal point
Number of holes can be one or greater
Restore modal G-code

End of macro

There is a new feature in the macro - a check against 'no input'. If one or more variables are
missing in the macro call assignment, the macro cannot be executed correctly. In some cases, the
macro will be executed, but with undesirable results. To prevent possibly dangerous situations,
the presence of each assignment will be checked. In macros, any variable not defined is an empty -
or null - variable (described earlier). A null variable is defined as #0. The checking method for a
variable assignment shown here can be added to any macro. The above macro also addresses the
issue of the arc pattern center being at X0YO. If the X and/or Y assignment is not provided, it will
be defined as X0 and/or YO through the macro.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

236 Chapter 20

Circular Pocket Roughing

A machining macro that can be used specifically for the removal of material from an internal
circular area (circular pocket) can have many variations. The objective of this example is to cover
the roughing operations, whereby the pocket final diameter is defined as a rough diameter. The
drawing in Figure 41 shows a sample pocket used for the macro call example.

»}l‘« Figure 41
|
Example of a drawing for a typical
‘ (b\xo’ / circular pocket roughing
IR I [I A
L
~~
m
i 7
- I
50 1.5
| | -
Material: Aluminum plate 100 x 75 x 12 mm

As in all previous examples, certain decisions, conditions and restrictions have to be imposed:

(d The diameter of the pocket must be known required rough diameter specified in G65
(1 Only a single Z-depth can be applied no steps at the bottom

1 The location of the pocket center must be known XY coordinates

(d Width of each cut must be selected so called stepover amount

(d Direction of machining center into the X+, then the full circle

(d Tool radius offset number must be entered in G65 not a radius value - only the offset number

(d Cutting feedrate must be entered in G65 statement assignment F (#9)

In order to accommodate more flexibility within the macro, additional initial settings will be re-
quired. The most important improvement to the macro will be the addition of segmented depth of
cut. This addition will bring an extra power to the macro by allowing to cut a deep pocket in cal-
culated depth segments, rather than at full depth. However, the macro will not require specifica-
tion of the depth of each cut (variable assignment), in which case the full depth will be reached by
the cutting tool at the macro beginning.

Another improvement to the macro is an added feature that allows the macro to be used for a
drawing that uses metric dimensions, as well as for a drawing designed in English units (inches).
This feature will only affect the clearance above the part, which is not specified in the macro as-
signment block G65. Other drawing dimensions have to be entered in their respective units within
the G65 macro block call. Of course, any other macro can use the same technique and even en-
large on it. Other techniques, already presented, may be used as well. The programming is based
on the program zero being at the lower left corner and the finished top of part.

After these considerations, the variables that will have to be defined can now be assigned.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACROS FOR MACHINING 237

Variable Data for Circular Pocket Roughing

Circular pocket roughing includes many settings that change from job to job. Good planning is
important and when completed, the following features will be defined to develop a macro toolpath
for a circular pocket roughing:

(d Pocket center as absolute X-location ... assigned letter X (variable #24)
(1 Pocket center as absolute Y-location ... assigned letter Y (variable #25)
d Pocket final depth ... assigned letter Z (variable #26)
(1 Pocket final diameter ... assigned letter D (variable #7)
(1 Depth of each cut ... assigned letter K (variable #6)
(1 Width of each cut ... assigned letter W (variable #23)
[Tool offset number ... assigned letter T (variable #20)
(1 Cutting feedrate ... assigned letter F (variable #9)

If the K (#6) is omitted, macro will cut to the full depth, as specified in assignment Z (#26).
This macro is also a good example of using two loops simultaneously - a loop within a loop.

The Figure 42 shows a graphical representation of the variables used for circular pocket rough-
ing macro. Note that the common variable #120 is defined as a calculated value within the
macro, based on the tool radius stored in the offset number identified by variable T (#20).

MACRO 08106

D (#7)
#120 Circular pocket - roughing macro
I VAR| # Description
L | X |24 | Absolute center location in X
AN Y |25 | Absolute center location in Y
PNy Z | 26| Pocket depth
Y (#25)) D | 7 | Pocket diameter (initial)
\ — D | 7 | Pocket radius #7/2 - applied
N ¥; K | 6 | Depth of each cut (Z-axis)
L W | 23| Width of cut (typical)
#4 —— =— W (#23) n/a | 4 | Calculated final radius to cut
g (TYP.) T |20 | Tool radius offset number
< F | 9 | Cutting feedrate

G65 P8106 X- Y- Z- D- K- W-T- F-

Figure 42

Assignment of variables for a typical circle pocket roughing - Macro 08106

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

238

Chapter 20

00026 (MAIN PROGRAM)

Any first motion location with spindle speed
Tool length offset + initial clearance above part
Macro call

N1 G21 Metric mode

N2 G90 GOO G54 X0 YO S1200 MO3

N3 G43 Z25.0 HO5 MO8

N4 G65 P8106 X50.0 ¥3.75 Z7.5 D49.0 K2.5 W4.0 T5 F500.0
N5 G80 Z25.0 M09 Retract to start position
N6 G28 Z25.0 MO5 Return to machine zero
N7 MO1 End of current tool

%

08106 (ROUGHING CIRCULAR POCKET MACRO)
IF[#7 EQ #0] GOT09101
IF[#20 EQ #0] GOT09102
IF[#23 EQ #0] GOT09103
IF[#26 EQ #0] GOT09104
IF[#9 EQ #0] GOT09105

#10 = #4003
#7 = ABS[#7/2]
#120 = [ABS[#[2400+#20]+#[2600+#20]11]1

IF[#120 GE #7] GOT09106
#26 = ABS[#26]

#126 = #4006

IF[#126 EQ 20.0] THEN #126
IF[#126 EQ 21.0] THEN #126 =
G90 GOO X#24 Y#25

non
N ©
o K

Z#126

GOl Z0 F[#9/2]

#16 = #26

IF[#6 EQ #0] GOTOl

#6 = ABS[#6]

GOTO2

NOOO1l #6 = #26

N0002 #4 = #7-#120
WHILE [#16 GE #6] DOl
#33 = #23

G91 GO1 Z-#6 F[#9/2]
WHILE [#33 LT #4] DO2
G90 GO1 X[#24+#33] F#9
GO3 I-#33

#33 = #33+423

END2

G90 GO1 X[#24+#4] F#9
GO3 I-#4

GOl X#24 F[#9%3]

#16 = #16-#6

END1

IF[#16 LE 0] GOT09000
G91 GO1 z-#16 F[#9/2]

Macro number and description

Pocket diameter must be defined

Tool offset number must be defined

Width of cut must be defined

Pocket depth must be defined

Cutting feedrate must be defined

Store current setting of G90 or G91

Change defined pocket dia. to pos. pocket radius
Retrieve stored abs. value of selected tool offset
Offset value cannot be GE the pocket radius
Guarantee that the Z-depth is a positive value
Check current units (English G20 or Metric G21)
Clearance above work is 0.1 inch for G20
Clearance above work is 2 mm for G21

Rapid to start position X and Y

Rapid to start position Z (above pocket center)
Feed to Z0 absolute start position

Store total depth in a separate register

Branch to default if depth of cut not defined
Guarantee that the Z-depth is a positive value
Bypass full depth setting

If depth of cut not defined, use full depth
Calculate the final cutting radius

This loop controls the depth of cut

Initial width of cut (= first circle radius)

Feed to current depth at one half of the feedrate
Cutting radius must be smaller than final radius
Stepover to the next cutting radius

Cutting the current circle radius

Increase cutting radius by the width of cut

End of loop 2

Final cutting radius approach - current depth
Cutting last radius (final dia.) - current depth
Fast feed back to X-start location - current depth
New depth of cut

End of loop 1

Branch to retract if pocket depth is O or negative
Feed to current depth at one half of the feedrate

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACROS FOR MACHINING

239

#33 = #23

WHILE[#33 LT #4] DOl
G90 GO1 X[#24+#33] F#9
G03 I-#33

#33 = #33+#23

END1

G90 GO1 X[#24+#4] F#9
G03 I-#4

GOl X#24 F[#9*3]

Initial width of cut (= first circle rad.) last depth
Cutting radius must be smaller than final radius
Stepover to the next cutting radius

Cutting the current circle radius

Increase cutting radius by the width of cut

End of loop 1

Final cutting radius approach - last depth
Cutting last radius (final dia.) - last depth

Fast feed back to X-start location - last depth

N9000 GOO z#l1l26

GOT09999

N9101 #3000=101 (NO POCKET DIAMETER)
N9102 #3000=102 (NO T-OFFSET)

N9103 #3000=103 (NO CUTTING WIDTH)
N9104 #3000=104 (NO POCKET DEPTH) Alarm number 104 or 3104
N9105 #3000=105 (NO FEEDRATE) Alarm number 105 or 3105
N9106 #3000=106 (TOOL RADIUS TOO LARGE) Alarm number 106 or 3106

Retract from the center above the pocket
Bypass alarm messages

Alarm number 101 or 3101

Alarm number 102 or 3102

Alarm number 103 or 3103

N9999 G#10 Restore modal G-code
M99 End of macro
%

Center-cutting end mill or a similar tool must be used to match the program requirements, un-
less the center of the circular pocket is open (rather than solid). Also note the modification of the
feedrate within the macro program, by either decreasing it or increasing it by a given factor. This
approach can be applicable to other macro features, not just to the feedrate.

Amount of Stock Left

Nowhere in the macro is specified the amount of stock to be left for later finishing. This amount
should be left to the CNC operator, for greater control at the machine. How is the stock handled?
This is the first macro that uses a system variable - two system variables, in fact. It is important to
understand that system variables depend on the control system - and its tool offset memory type,
as in this example. Controls with Memory Type C and less than 200 offsets use the 2401-series
system variables for the Geometry D-offset, and 2601-series for the Wear D-offset (see Chapter
11 for details). In the example, assignment T=#20=5, therefore offset 5 will store the geometry
and the wear settings for the cutter radius. For example, if the tool is ©¥12 mm end mill, the stored
geometry offset will be set to the cutter radius of 6 mm and the wear offset will store the amount
left for finishing, for example, 0.5 mm. The variable #120 controls only the last circular cut,
which makes the final pocket size. The control system will interpret the block

#120

[ABS[#[2400+#20]+#[2600+#20]1]1 .. as ...

#120 = [ABS[#[2400+5]+#[2600+5]]] = [#2405+#2605] = [6.0+0.5] = 6.5

Since the actual cutter radius is 6 mm but the wear offset setting is additional 0.5 mm, the com-

pleted pocket diameter will be 1 mm smaller and should measure 48 mm. If the wear offset 5 at
the control is set to zero, the pocket will be finished to size, as per drawing.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

240 Chapter 20

Circular Pocket Finishing

Finishing cut applied to a circular pocket (or a similar machining operation) is a follow up to the
previous example and is the main subject of this macro. The macro can be used as it is on its own,
or as a macro following the circular pocket roughing macro, described in the previous section.
The example drawing in Figure 43 is similar to the last example.

Figure 43

Example of a drawing for a typical
circular pocket finishing

315

| 50

AN

Material: Aluminum plate 100 x 75 x 12 mm

A typical internal circular toolpath is commonly programmed from the center of the pocket,
through the roughing motions and ending again at the center. Here is a typical machining process:

1. Tool moves to the center of the pocket, above the work
Tool feeds-in to the Z-depth
Cutter radius offset is applied along the linear XY motion from center

Tool moves along the lead-in arc towards the pocket diameter

Tool moves along the lead-out arc away from the pocket diameter

2.

3

4

5. The full circle is machined in one block

6

7. Cutter radius offset is canceled in the linear XY motion towards center
8

Tool retracts above the work

This macro uses an automatically calculated lead-in and lead-out tangential arc (blend radius).
The same tangential toolpath can also be adapted to other finishing applications, particularly for
the purpose of achieving a better surface finish.

NOTE - Several control systems support a G-code for milling a circular pocket, typical identi-
fied as G12 (CW) and G13 (CCW). Fanuc controls do not have this feature built-in for direct use,
but Fanuc provides tools to develop the G-code using a macro. The complete development of this
new command is described in the next chapter (Chapter 21 - Custom Cycles).

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACROS FOR MACHINING

241

Variable Data for Circular Pocket Finishing

The following circular pocket finishing macro features will be defined:

Circle pocket diameter

Absolute X-location of the center
Absolute Y-location of the center
Z-depth of the pocket

Tool offset number for radius
Cutting feedrate for profile

I N Wy Iy Ry

assigned letter W (variable #23)
assigned letter X (variable #24)
assigned letter Y (variable #25)
assigned letter Z (variable #26)
assigned letter T (variable #20)
assigned letter F (variable #9)

The illustration in Figure 44, shows the pictorial representation of the variable assignments.

-~ W (#23) =~

Circular pocket - finishing macro

MACRO 08107

VAR

#

Description

24

Absolute center location in X

25

Absolute center location in Y

26

Pocket depth

23

Pocket diameter

20

Tool radius offset number

M| H4|S|N|<|X

9

Cutting feedrate

F
N
®
>

G65 P8107 X-Y-Z- W-T- F-

Figure 44

Assignment of variables for a typical circle pocket finishing - Macro 08107

All variables used in the macro has been carefully selected, based on machining procedures and
several other factors. The selected machining procedure for the pocket finishing is applied within
the macro body. As in any other macro, there are some conditions, restrictions and other require-
ments, this time applied to the circular pocket finishing toolpath:

(1 Circular pocket can have any positive diameter

The center of the pocket must be known (including X0Y0)

o
(1 Z-depth may be positive or negative but not a zero
o

The location of the contour start is arbitrarily set at 90° (12 o’clock)

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

242

Chapter 20

Uoududdodd

(POCKET DIA - TOOL DIA) / 2

Z-clearance above the work is 2 mm or 0.1 inches (automatically selected)

Feedrate for Z-axis infeed is one half of the programmed feedrate

Direction of machining is from the center in climb milling mode (G41 D..) at M03

The tool offset numbers must be within the range of 1-33

Tool offsets used are for Memory Offset Type C - less than 200 offsets - as per Fanuc control designation
Tool diameter must be greater than 0 and less than the pocket diameter

LEAD-IN and LEAD-OUT arcs are identical and calculated by the macro as:

Additional conditions can be applied only for more advanced approach:

(d If cleanup of the bottom is required during finishing, the tool diameter must be POCKET DIA / 3 or greater
(1 Stepped Z-depth may be added to the macro, if desired

00027 (MAIN PROGRAM)

N1 G21

N2 G90 GO0 G54 X0 YO sS800 MO03
N3 G43 Z25.0 HO04 M08

N4 G65 P8107 X50.0 ¥37.5 Z7.5 W49.0 T4

N5 Z25.0 M09

N6 G28 Z25.0 MO5
N7 MO1

%

08107 (CIRCULAR POCKET FINISHING MACRO)

IF[#26 EQ 0] GOT09101

IF[#23 LE 0] GOT09102

IF[#20 LE 0] GOT09103

IF[#20 GT 33] GOT09104

IF[#9 EQ #0] GOTO09105

#120 = #[2400+#20]+#[2600+#20]
IF[#120 LE 0] GOTO09106

#23 = #23/2

IF[#23 LE #120] GOTO09107
#101 = [#23+#120]/2

#10 #4003

#26 ABS[#26]

#126 = #4006

IF[#126 EQ 20.0] THEN #126
IF[#126 EQ 21.0] THEN #126 =
G90 GO0 X#24 Y#25

Z#126

GOl Z-#26 F[#9/2]

G91 G41 X#101 Y[#23-#101] D#20 F#9
GO03 X-#101 Y#101 I-#101

J-#23

X-#101 Y-#101 J-#101

GOl G40 X#101 Y-[#23-#101]

G90 GO0 ZzZ#126

|
N o
o R

Metric mode

Any first motion location with spindle speed
Tool length offset with clearance above part
F150.0 Macro call with assignments
Retract above work

Return to machine zero

End of current tool

Depth of pocket must not be a zero

Pocket diameter must be a positive value
Offset number required for cutter radius offset
Maximum number of offsets is 33

Cutting feedrate must be defined

Retrieve the stored value of selected tool offset
Offset value radius must be positive

Change diameter of pocket to radius

Pocket radius must be larger than offset radius
Calculate Lead-in/Lead-out arc radius

Store current setting of G90 or G91

Guarantee that the Z-depth is a positive value
Check current units (English G20 or Metric G21)
Clearance above work is 0.1 inch for G20
Clearance above work is 2 mm for G21

Rapid to start position X and Y

Rapid to start position Z (above pocket center)
Feed to depth at one half of the feedrate
Motion from center + cutter radius offset
Lead-in arc tool motion

Full circle tool motion

Lead-out arc tool motion

Return to the center + cancel cutter radius offset
Retract above the finished pocket

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACROS FOR MACHINING

243

GOT09999
N9101
N9102
N9103
N9104
N9105
N9106
N9107
N9999
M99

%

G#10

#3000=101
#3000=102
#3000=103
#3000=104
#3000=105
#3000=106
#3000=107

(Z-DEPTH IS ZERO)

(POCKET DIA ERROR)
(OFFSET NUMBER ERROR)
(OFFSET NUMBER TOO BIG) Generates alarm number 104 or 3104
Generates alarm number 105 or 3105
Generates alarm number 106 or 3106

(FEEDRATE NOT DEFINED)
(OFFSET VALUE IS NOT POSITIVE)
(TOOL OFFSET TOO LARGE) Generates alarm number 107 or 3107

Bypass alarm messages

Generates alarm number 101 or 3101
Generates alarm number 102 or 3102
Generates alarm number 103 or 3103

Restore modal G-code

End of macro

In this macro, two system variables are used to defined local variable #120. Compare the cur-
rent definition of this variable with the similar definition in the previous example (O8106) - there
is no ABS function used in the current macro. Instead, the variable definition is immediately fol-
lowed by a conditional IF test - if the offset value is negative, the system will issue an error condi-
tion (alarm). This is not a better solution, it is shown here only as 'a solution' - the ABS function is
a much better choice, one that will not require an error test.

In this and other macros included in the handbook, a test against missing feedrate or feedrate
being zero can also be made, if desired. Make sure to write either statement correctly - the entries
are similar, but will produce a very different result (assignment F'=#9 is used for the example):

IF[#9 EQ #0] GOTO...
IF[#9 EQ 0] GOTO...

Cutting feedrate must be defined
Cutting feedrate must NOT be a zero

In Figure 45 are two drawings that can be used for testing the integrity of circle pocket macros.

25 S 1.5
- 1
2‘
METRIC Cutter diameter 16
Stock for finish 0.5
Spindle speed 1175
Cutting feedrate | 300.0
Tool length offset| 3

—-—1.0 —»‘ 1.2 —0.3}=

i T

0.75

ENGLISH Cutter diameter | 0.625
Stock for finish 0.025

Spindle speed 1175

Cutting feedrate | 12.0

Tool length offset| 3

Figure 45

Metric and English drawings that can be used to test the circular pocket macros

A ETGieer NOBob ks Pefie

244

FANUC CNC Custom Macros

Chapter 20

Slot Machining Macro

Machining a closed slot is a common milling operation, one that requires a number of similar
calculations. The basic shape of a slot is always the same, but its location, length, radius, angle
and depth vary (in addition to other non-geometrical values). A closed slot machining is the per-
fect choice to be developed as a custom macro. Figure 46 shows a drawing of a typical closed slot.

Figure 46

Example of a drawing for a typical
slot machining macro

oSl

25

Material: Aluminum plate 100 x 75 x 12 mm

28

5 DEEP

Typical machining process to cut a common closed slot is quite simple:

1.

N o o 0w b

Z

| Iy Ny Ny Iy Iy Wy N

Rapid to the first arc center and above work

Feed-in to slot depth

Feed to the second arc center

Lead-in towards contour - apply cutter radius offset

Contour slot

Lead-out towards arc center - cancel cutter radius offset
Retract above work

in all other macros, there are certain criteria to be established:

Absolute center location of one end radius must be known

Depth of the slot must be known

Slot angular orientation from the defined center location must be known
The length of slot between centers of the two radii must be known

The width of the slot must be equal to the double slot radius

Tool radius offset number must be defined

Cutting feedrate must be specified

Lead-in and lead-out arc will be calculated automatically

The positive or negative cutting direction is calculated by the macro, using the defined angle
orientation. This is a more structured approach then forcing a minus sign in the program.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACROS FOR MACHINING 245

Variable Data for Slot Machining

Once the initial conditions have been established, the macro variables can be assigned.

(1 Absolute X-location of one radius center ... assigned letter X (variable #24)
(1 Absolute Y-location of one radius center ... assigned letter Y (variable #25)
(1 Z-depth of the slot ... assigned letter Z (variable #26)
(4 Angular orientation of the slot ... assigned letter A (variable #1)
(1 Distance between slot centers ... assigned letter D (variable #7)
(1 Slot radius (one of two same radiuses) ... assigned letter R (variable #18)
d Tool radius offset number ... assigned letter T (variable #20)
(1 Cutting feedrate slot profile ... assigned letter F (variable #9)

Figure 47 shows a graphical representation of the variable data assignments in macro call G65:

MACRO 08108

R(#18)

Slot machining macro

<
>
Pl
H

Description

24 | Left center X-coordinate

25| Left center Y-coordinate
26 | Slot depth

Slot angular orientation

Y (#25)

7 | Distance between centers
18 | Slot radius

20 | Tool radius offset number

X (#24)

M| 4|0 |0 |>» | N|<|X

9 | Cutting feedrate

G65 P8108 X-Y-Z- A-D-R-T- F-

Figure 47

Assignment of variables for a typical closed slot macro - Macro 08108

In the following program example, some of the initial input checking blocks and their corre-
sponding alarm definitions have been omitted to keep the macro clear for studying. However, sev-
eral earlier examples show how the techniques work and once the macro is verified, the blocks
testing proper input should be added. This macro is a very good example of programming various
trigonometric functions (angular dimensions). Also note that several common variables are rede-
fined, once their original meaning had been applied.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

246

Chapter 20

00028 (MAIN PROGRAM)

N1 G21

N2 G90 GO0 G54 X0 YO sS800 MO03
N3 G43 Z25.0 HO5 M08

N4 G65 P8108 X28.0 ¥25.0 Z5.0 R9.0 D52.0 A25.0 T5 F300.0

N5 GO0 Z25.0 MO9
N6 G28 Z25.0 MO5
N7 M30

%

08108 (SLOT MACRO)
#10 = #4003

<... place error definitions here ...>
#126 = #4006
IF[#126 EQ 20.0] THEN #126
IF[#126 EQ 21.0] THEN #126
G90 GOO X#24 Y#25
Z#126
GOl Z-[ABS[#26]] F[#9/2]

0.1
2.0

#120 = [ABS[#[2400+#20]1+#[2600+#20]]]
#101 = [#18+#120]/2

#102 = #18-#101

#124 = [COS[#1]*#7]

#125 = [SIN[#1]*#7]

G91 X#124 Y#125 F#9
#103 = ATAN[#102]/[#101]

#104 = SQRT[#102*#102+#101*#101]
#124 = [#104*COS[#1+#103+180]]
#125 = [#104*SIN[#1+#103+180]]

G41 X#124 Y#125 D#20
#105 = SQRT[#101*#101*2]

#114 = [COS[#1]*#101]
#115 = [SIN[#1]*#101]
#124 = [COS[#1-45]1*#105]
#125 = [SIN[#1-45]*#105]

GO03 X#124 Y#125 I#114 J#115

#114 = [COS[#1+90]*#18]
#115 = [SIN[#1+90]*#18]
#124 = [COS[#1+90]*[#18%2]]
#125 = [SIN[#1+90]* [#18*%2]]

X#124 Y#125 I#114 J#115
#124 = [COS[#1+180]*#7]
#125 = [SIN[#1+180]*#7]
GOl X#124 Y#125

#114 = [COS[#1-90]*#18]
#115 = [SIN[#1-90]*#18]
#124 = [COS[#1-90]* [#18*2]]
#125 = [SIN[#1-90]* [#18*%2]]

GO03 X#124 Y#125 I#114 J#115
#124 = [COS[#1]*#7]

Macro number and description
Store current setting of G90 or G91

Check current units (English G20 or metric G21)
Clearance above work is 0.1 inch for G20
Clearance above work is 2 mm for G21

Rapid 1o the first center slot position in XY
Clear above work in Z

Feed to depth at half the feedrate

Retrieve the stored value of selected tool offset
Calculate Lead-in/Lead-out arc radius

Calculate difference between radiuses

Calculate the X-length of the center motion
Calculate the Y-length of the center motion
Motion from the center

Calculate motion angle for GO1

Calculate motion length for GO1

Calculate the X-motion from center to lead-in arc
Calculate the Y-motion from center to lead-in arc
Make the GOI motion + cutter compensation on
Calculate motion length for GO3 (at 45 degrees)
Calculate the I-value of the lead-in arc
Calculate the J-value of the lead-in arc
Calculate the lead-in arc X-increment

Calculate the lead-in arc Y-increment

Lead-in arc motion

Calculate the I-value of the right slot arc
Calculate the J-value of the right slot arc
Calculate the right slot arc X-increment
Calculate the right slot arc Y-increment

Right slot arc of 180°

Calculate the X-length of linear motion 1
Calculate the Y-length of linear motion 1

Linear motion 1

Calculate the I-value of the left slot arc
Calculate the J-value of the left slot arc
Calculate the left slot arc X-increment

Calculate the left slot arc Y-increment

Left slot arc of 180°

Calculate the X-length of linear motion 2

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACROS FOR MACHINING

247

#125 = [SIN[#1]*#7]

GOl X#124 Y#125

#114 = [COS[#1+90]1*#101]
#115 = [SIN[#1+90]*#101]
#124 = [COS[#1+45]*#105]
#125 = [SIN[#1+45]*#105]

GO3 X#124 Y#125 I#114 J#115
#124 [SIN[#103-#1-90] *#104]
#125 = [COS[#103-#1-90]*#104]
GOl G40 X#124 Y#125
G90 GOO z#126
GOT09999

<... place error messages here ...>
N9999 G#10
M99
%

Calculate the Y-length of linear motion 2
Linear motion 2

Calculate the I-value of the lead-out arc
Calculate the J-value of the lead-out arc
Calculate the lead-out arc X-increment
Calculate the lead-out arc Y-increment
Lead-out arc motion

Calculate X-motion from lead-out arc to center
Calculate Y-motion from lead-out arc to center
Back to start point motion + cutter offset off
Retract above the finished slot

Bypass alarm messages

Restore modal G-code
End of macro

One method of a macro design is evident in the slot macro. Note that many variables are used
over and over again, with different values. This approach results in fewer variables and makes the
macro easier to interpret. There is no need for each value to have its own unique variable.

Circular Groove with Multiple Depth

The macro described in this section is a rather simple one, yet very practical in many machining
applications - it also serves as a very good example to study custom macro design. Its purpose is to
cut a circular groove, strictly a utility type with no tight tolerances, but with multiple depth cuts.
This method of machining is very useful for groove roughing in tough materials. Before the
macro will be developed, it will be preceded by a subprogram development. Subprograms are of-
ten excellent candidates for macros, and this example shows the comparison.

From the drawing information in Figure 48, the subprogram - and macro - can be developed:

822

7:§>>\

@

16.7

—

22.4 0.75

39

R —

T
%

Figure 48

Example of a drawing for a typical

MY

circular groove with multiple depth
macro

MAX.

26 END MILL

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

248 Chapter 20

From Subprograms to Macros

Developing a subprogram rather than a macro is perfectly justified for a one-of-a-kind job that
will not likely be repeated in the future. Subprograms are also the only 'automation' tools, when
the macro option is not available for the existing control system. To program the rough groove il-
lustrated in Figure 48, the main program will call a subprogram 08022:

(MAIN PROGRAM)
(X0Y0 LOWER LEFT CORNER - Z0 TOP OF PART)

N1 G21 Metric units mode

N2 G90 GOO G54 X22.4 Y16.7 S750 M03 Start XY location at zero degrees

N3 G43 z5.0 HO1l MO8 Clearance above the start point

N4 GOl Z0.6 F100.0 Subprogram must start at Z0.6

N5 M98 P8022 L6 Subprogram call - REPEAT six times (or K6)
N6 G90 GO0 z5.0 M09 Rapid to clearance above the part

N7 G91 G28 Z0 MO5 Machine zero return for Z-axis

N8 G28 X0 YO Machine zero return for XY-axes

N9 M30 End of main program

%

08022 (SUBPROGRAM)

G0l G91 z-0.75 F100.0 Feed in the Z-axis by the depth increment
G03 1-11.0 Cut the full circle

M99 Subprogram end

%

It looks like a simple subprogram - and it is. Yet, some critical calculations had to be done. The
first calculation is the start Z-position - at Z0.6. Reason? The required absolute depth of Z-3.9
must not be exceeded. The travel distance (distance-to-go) from the start position to the full depth
must be equally divisible by the cutting depth, with no leftovers. When the cutting depth is pro-
grammed at 0.75 mm, it takes six equal depth cuts to reach the Z-3.9 final depth:

9 = 4.5 Total travel distance (distance-to-go) = 4.5

0.
4 75 = 6 Total number of EQUAL depth cuts = 6

6 + 3.
.5/ 0.
When the tool starts at Z0.6 and then moves down incrementally by the amount of Z-0.75, it
will feed into the absolute tool position of Z-0.15 during the first cut. That means the first depth
cut will physically be not as deep as all subsequent depth cuts, because part of the 'depth’ is in the
air (above the part). In subprograms, this kind of compromise is often necessary, as are many spe-
cial calculations.

In well designed macros, compromise calculations are not required. Macros do need many cal-
culations (as the previous examples have shown), but once developed and verified, macros offer
much greater flexibility, streamlined approach to problem solving, and functions not available in
subprograms (or standard programs).

Understanding macros usually starts with understanding subprograms. This example - and all
previous examples - have shown that good macro design follows the same logical thinking that is
needed for the subprogram development - macros just offer more tools to do the job.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACROS FOR MACHINING

249

Macro Version Development

Normally, custom macros are developed from scratch - there is no need to create a subprogram
first and then 'translate’ it. Based on the provided drawing in Figure 48 (and all similar drawings),
a general master template of all required variables can be made (Figure 49):

Multiple depth circular groove macro

MACRO 08109

Description

Groove center X-coordinate

Groove center Y-coordinate

Groove center diameter

Distance between centers

Maximum depth of cut

~ W (#23) | D #7) —=] |=—

;// VAR | #

X |24

| | v

! W |23

Y (#25) D |7
L c

- X (#24) = C (#3) —m|l=— F 19

Cutting feedrate

G65 P8109 X- Y- W- D- C- F-

Figure 49

Assignment of variables for a typical circular groove cutting macro - Macro 08109

Based on the drawing specifications, the macro call will be developed as expected:

G65 P8109 X- Y- W- D- C- F-

1" where...
X = (#24) Center location of the circular groove in X-axis
Y = (#25) Center location of the circular groove in Y-axis
W= (#23) Groove diameter on the centerline (groove pitch diameter)!
D = (#7) Total depth of the groove
C = (#3) Cutting depth of the groove (maximum depth of each cut)
F = (#9) Cutting feedrate for the circle machining

Although this macro only covers the most important general concepts of controlling the groove
depth, it should not be very difficult to develop another macro, one that completes both walls of
the groove, once the final depth has been reached (finishing cuts). Regardless of the macro com-
plexity (easy or difficult), thorough pre-planning is absolutely essential. Good planning can save

many valuable hours of work and yield excellent results.

A ETGieer NOBob ks Pefie

250

FANUC CNC Custom Macros

Chapter 20

In a complete application, the dimensions from Figure 48, will be transferred to the macro call:

00029

(X0Y0 LOWER LEFT CORNER - Z0 TOP OF PART)

N1 G21

Metric units mode

N2 G90 GOO G54 X22.4 Y16.7 S750 MO3 Any reasonable XY location is OK

N3 G43 Z5.0 HO1l MO8
N4 GOl Z0 F100.0

Clearance above the start point
Macro must start at Z0

N5 G65 P8109 X22.4 Y16.7 W22.0 D3.9 C0.75 F100.0 Macro call and assignments

N6 G90 GO0 z5.0 M09
N7 G91 G28 z0 MO5
N8 G28 X0 YO

N9 M30

%

Rapid to clearance above the part
Machine zero return for Z-axis
Machine zero return for XY-axes
End of main program

08109 (MULTI DEPTH CIRCULAR GROOVE MACRO)

#11 = #4001

#13 = #4003

#23 = #23/2

G90 GOO X[#24+#23] Y#25
#100 = #7/4#3

#101 = FIX[#100]

#33 =1

WHILE[#33 LE #101] DO1
GOl G91 zZ-#3 F#9

G03 I-#23
#33 = #33+1
END1

IF[#100 EQ #101] GOTO999
G90 GO1 Z-#7

G03 I-#23

N999 G90 GOO Z0

G#11l G#13

M99

o)

o

Store current G-code of Group 01

Store current G-code of Group 03

Change groove pitch diameter to radius
Rapid to XY start of groove at current Z-depth
Calculate exact number of depth passes
Discard fractions of #100 for actual number of depth passes
Reset counter of depth passes to the first one
Check if more depth cuts are necessary

Feed in the Z-axis by the depth increment

Cut the full circle

Increase depth pass counter by 1

End the loop

Check if full depth reached

Cut to full depth of the groove

Cut the full circle

Rapid to the top of part

Restore G-codes of Group 01 and Group 03
End of macro

Just one short note relating to the WHILE loop. If variable #100 (exact number of passes) is a

whole number, that number will also become the number of depth passes. Otherwise, there will be
one more circular cut at the full groove depth, which could be as small as the minimum increment
of the selected dimensional units (0.001 mm or 0.0001 inches), but never equal to or greater than
the full groove depth defined in variable assignment D (#7).

Macros in this chapter demonstrate parametric programming. Compare the macro development
with the subprogram example - both types are valid in their own way, but there are significant dif-
ferences.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACROS FOR MACHINING 251

Rectangular Pocket Finishing

Machining a rectangular pocket is very similar to machining a circular pocket. In this chapter,
both roughing and finishing examples were shown for the circular pocket machining. As far as the
general programming approach is concerned, there is not much difference in the macro design to
machine a roughing toolpath for a rectangular pocket, but there are some differences when it co-
mes to machining a finished rectangular pocket. Another name for this type of machining is frame
machining or frame macro, because only the walls and corner radiuses are machined.

Figure 50 shows a typical drawing of a rectangular frame machining.

100 8 Figure 50

Example of a drawing for
typical rectangular pocket (frame)

finishin
A g

60

As with all macro examples in this handbook, the objective is to develop a macro for learning
purposes, not necessarily macro with all bells and whistles. Before developing the macro, decide
on the method of machining, for example:

1.
2.

o o w

7.
8.

Start at the pocket middle position (part zero in the example)
Plunge-in to depth at one-half the programmed feedrate

Apply cutter radius offset G41 D- along a lead-in linear motion
Approach the contour as a lead-in arc

Machine the contour back to the starting point

Leave the contour as a lead-out arc

Cancel cutter radius offset - G40 - along a lead-out linear motion

Retract above the part

Items 1 and 8 will be included in the main program, items 2-7, as well as various checks and
calculated values, will be part of the macro. Figure 51 illustrates the assignment of variables.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

252 Chapter 20

MACRO 08110

W(#23) —w| = Z(#26)
- #33 Frame finishing macro
VAR | # Description
777

- ~ &% W |23 | Dimension along X-axis

H | 11| Dimension along Y-axis
H#11) 4+—|— T T Z |26 | Finished depth
S & #?1 R |18 | Pocket corner radius (4X)
\ Z D | 7 | Cutter radius offset number

F | 9 | Cutting feedrate

#32 R(#18)

G65 P8110 W- H- Z- R- D- F-

Figure 51

Assignment of variables for a typical rectangular pocket (frame) finishing macro - Macro 08110

The four supplied dimensions will become variable assignments, the center of the pocket is set
at X0YO0. The macro can be modified for other XY coordinates. Based on the engineering specifi-
cations provided by the drawing, the frame finishing macro call can be developed:

G65 P8110 W- H- Z- R- D- F-

1> where ...
W= (#24) Pocket length along the X-axis
H = (#25) Pocket width along the Y-axis
Z = (#23) Pocket finished depth
R = (#18) Pocket corner radius
D = (#7) Cutter radius offset number
F = (#9) Cutting feedrate for the pocket machining

Machining decisions and special requirements will influence the macro design. In this example,
the tool starts and ends at the pocket middle position. That may be a suitable position for small and
medium size pockets, but rather inefficient for large pockets. Other additions to the macro can
include variable part zero, angular pocket orientation, finishing the bottom surface, changing
feedrates in the corners, clearance above the part, and so on. As presented, the macro does in-
clude checking against missing variable assignments, but does not check against wrong input. It
also checks if the stored cutter radius offset value is small enough to cut both the lead arcs and the
corner radiuses. With a specific goal, the macros in this chapter can be greatly enhanced.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACROS FOR MACHINING

253

Status settings and tool call
Center of pocket location
Initial level clearance

Macro call

Machine zero Z-axis only

00030

N1 G21 Metric units

N2 G17 G40 G80 G49 TO3

N3 MO6 Tool change

N4 G90 G54 GOO X0 YO S800 MO3 TO04

N5 G43 Z10.0 HO3 MO8

N6 65 P8110 W100.0 H60.0 Zz8.0 R11.0 D3 F175.0

N7 G90 GOO z2.0 Clear above part
N8 G28 Z2.0 M09

N9 MO1l Optional stop

08110 (RECTANGULAR POCKET FINISHING)
IF[#23 EQ #0] GOT09101
IF[#11 EQ #0] GOT09102
IF[#18 EQ #0] GOT09103

IF[#7 EQ #0] GOT09104

IF[#9 EQ #0] GOTO9105
IF[#26 EQ #0] GOT09106

#120 = #[2400+#7]+#[2600+#7]
IF[#120 GE #18] GOTO09107
#31 [ABS[#11/2]]

#32 = #31/2

IF[#120 GE #32] GOT09107

Length along X-axis must be defined

Length along Y-axis must be defined

Corner radius must be defined

Cutter radius offset number must be defined
Cutting feedrate must be defined

Pocket (frame) depth must be defined

Retrieve the stored value of selected tool offset
Offset value radius must be less than corner radius
One half of the length along the Y-axis (positive)
Lead-in and lead-out line and arc

Offset value radius must be less than lead radius

#33 = [ABS[#23/2]] One half of the length along the X-axis
G90 GO0 z2.0 Arbitrary Z-clearance

GO1 Z-[ABS[#26]] F[#9/2] Half feedrate for plunge-in

G91 GO1 G41 X-#32 Y-#32 D#7 F[#9*2] Linear lead-in with cutter radius offset ON
GO03 X#32 Y-#32 I#32 JO F#9 Arc lead-in

GO1 X[#33-#18] Lower bottom wall

GO03 X#18 Y#18 10 J#18 Lower right corner

GOl Y[2*[#31-#18]] Right wall

GO03 XxX-#18 Y#18 I-#18 J0 Upper right corner

GOl X-[2*[#33-#18]] Top wall

GO03 X-#18 Y-#18 IO J-#18 Upper left corner

GOl Y-[2*[#31-#18]] Left wall

GO03 X#18 Y-#18 I#18 JO Lower left corner

GO1 X[#33-#18] Lower bottom wall

GO03 X#32 Y#32 I0 J#32 Arc lead-out

GOl G40 X-#32 Y#32 F[#9*2] M09 Linear lead-out with cutter radius OFF
GOT09999 Bypass alarm messages

N9101 #3000 = 101 (LENGTH ALONG NOT DEFINED) Generates error
N9102 #3000 = 102 (LENGTH ACROSS NOT DEFINED) Generates error
N9103 #3000 = 103 (CORNER RADIUS NOT DEFINED) Generates error
N9104 #3000 = 104 (RADIUS OFFSET NUMBER NOT DEFINED) Generates error
N9105 #3000 = 105 (FEEDRATE MUST BE DEFINED) Generates error
N9106 #3000 = 106 (POCKET DEPTH MUST BE DEFINED) Generates error
N9107 #3000 = 107 (OFFSET VALUE TOO LARGE) Generates error
N9999 M99 End of macro

%

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

254 Chapter 20

Note the use of the ABS function - regardless of the user's input, the macro controls the output
with the desired sign. The ABS (absolute value) function guarantees that a positive of a negative
input value will always be translated into a positive. For example, the following input of the depth
could be either positive of negative:

G65 P8110 ... z8.0 ... positive data input

G65 P8110 ... z-8.0 ... negative data input

Within the macro, the input of variable #26 (Z) is made positive and the required output is built
in the macro - negative Z-value is guaranteed, regardless of the input:

GOl Z-[ABS[#26]] F[#9/2] Z-depth is guaranteed to be negative

This is a very powerful programming technique - it anticipates the type of user's input and pro-
vides a method that will always yield the expected result.

Thousands more examples could be covered in this chapter - in fact, a whole thick book could
deal with examples only - and that is exactly the beauty of custom macros in general and paramet-
ric programming in particular. All examples presented in this chapter only cover several varieties
and only very few of the many possibilities that exist.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

24 CUSTOM CYCLES

The majority of CNC machine tool manufacturers offer a variety of sophisticated options on
their CNC machines - options that are basically hardware additions, additions that must be sup-
ported by a special software code, in order to make them useful in a CNC program. Typical op-
tions in this category cover special coolant functions, tool change functions, broken tool detectors,
operations of pallets, various interfaces, and many others, too numerous to list. The machine tool
reference manual that accompanies every CNC machine specifies that the majority of these op-
tions are controlled by calling a special (i.e., non-standard) G-code or an M-code in the CNC part
program (acceptable as an input to the control system).

Fanuc macros offer similar possibilities - any experienced macro programmer can create and
subsequently use special G-codes or M-codes (and some other codes as well). It is not very likely
that a production oriented CNC programmer you would develop a G-code macro or an M-code
macro for some special hardware feature of the machine tool, but it can be very likely that a macro
can be generated as a special purpose software, such as a unique repetitive machining. Some
typical examples in this category belong to the fixed cycles or canned cycles. Fixed cycles shorten
programming by eliminating repetitive data. In reality, they are special purpose macros that Fanuc
provides as a standard programming feature (built-in). We call these macros by an established
G-code, for example, by G81 command for the standard drilling cycle.

Special Cycles

As useful as the standard fixed cycles are in their own purpose, sometimes there is a need for a
cycle that is either slightly different from the existing cycle, or is a totally new cycle - a cycle that
will have the same look and feel of the 'traditional' fixed cycles. Take, for example, a fixed cycle
that requires a certain feedrate during the cutting motion, but a different feedrate during the retract
motion. No standard fixed cycle can do it, but with a special macro, it can be done.

Normally, Fanuc controls allow storage of a macro as a special type of subprogram with vari-
able data, using the O- address. Such a macro is called by the G65 macro call command, followed
by the macro program number P- and the required variable assignments. In order to define a new
macro as a G-code cycle or a special M-function, there are only three considerations to follow:

(1 Select the G-code or the M-code to be used no duplication with existing codes
(1 Select the macro program number from a given range depends on the control system
(1 Set the system parameters of the machine control system depends on the control system

It is important that neither the new G-code nor the M-code is already available at the control. In
other words, it requires very good knowledge of all G/M codes the control system uses, so any
new cycle selection is unique. Knowing which system parameter is to be used to register the selec-
tion is also very important. The equivalent parameter numbers vary from control to control, so
assuring the correct data entry is imperative.

255

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

256 Chapter 21

Options Available

Although the most common programming codes that are used as special cycles are the G-codes,
M-functions are often used to allow a hardware function call by the special M-code, selected by
the CNC macro programmer (often at the manufacturer's level).

Typically, the following addresses can be used for either a macro call or a subprogram call:

[d G-code macro call ..._common
d M-code macro call ..._common
(1 M-code subprogram call ... less common
[S-code subprogram call ... less common
(1 T-code subprogram call ... less common
(1 B-code subprogram call ... less common

G-code Macro Call

Total of 10 (that is ten) of G-codes can be defined as special custom macros that can be called by
a G-code. Only the range between GO1 and G255 is allowed, with the exception of G65, G66,
and G67 codes. Positive value is the same as G65, negative value is the same as G66 (or G66.1).

Depending on the control system, the system parameters related to the G-code Macro Call are
listed in the following tables (different control systems are shown):

FANUC SYSTEM 0
G-code Macro Call - 10 options available - G65, G66 and G67 excluded
Parameter Number Description <Valid data 1 - 255>
220 G-code that calls the custom macro stored in program 09010
221 G-code that calls the custom macro stored in program 09011
222 G-code that calls the custom macro stored in program 09012
223 G-code that calls the custom macro stored in program 09013
224 G-code that calls the custom macro stored in program 09014
225 G-code that calls the custom macro stored in program 09015
226 G-code that calls the custom macro stored in program 09016
227 G-code that calls the custom macro stored in program 09017
228 G-code that calls the custom macro stored in program 09018
229 G-code that calls the custom macro stored in program 09019

A ETGieer NOBob ks Pefie

CUSTOM CYCLES

FANUC CNC Custom Macros

257

FANUC SYSTEM 10/11/15

G-code Macro Call - 10 options available - G65, G66 and G67 excluded

Parameter Number Description <Valid data 1 - 255>
7050 G-code that calls the custom macro stored in program 09010
7051 G-code that calls the custom macro stored in program 09011
7052 G-code that calls the custom macro stored in program 09012
7053 G-code that calls the custom macro stored in program 09013
7054 G-code that calls the custom macro stored in program 09014
7055 G-code that calls the custom macro stored in program 09015
7056 G-code that calls the custom macro stored in program 09016
7057 G-code that calls the custom macro stored in program 09017
7058 G-code that calls the custom macro stored in program 09018
7059 G-code that calls the custom macro stored in program 09019

FANUC SYSTEM 16 /18 / 21

G-code Macro Call - 10 options available - G65, G66 and G67 excluded

Parameter Number Description <Valid data 1 - 255>
6050 G-code that calls the custom macro stored in program 09010
6051 G-code that calls the custom macro stored in program 09011
6052 G-code that calls the custom macro stored in program 09012
6053 G-code that calls the custom macro stored in program 09013
6054 G-code that calls the custom macro stored in program 09014
6055 G-code that calls the custom macro stored in program 09015
6056 G-code that calls the custom macro stored in program 09016
6057 G-code that calls the custom macro stored in program 09017
6058 G-code that calls the custom macro stored in program 09018
6059 G-code that calls the custom macro stored in program 09019

A ETGieer NOBob ks Pefie

258

FANUC CNC Custom Macros

Chapter 21

M-functions Macro Call

Total of 10 (ten) of M-functions can be defined as custom macros called by an M-function. Only
the range between MO1 and M97 is allowed. M-functions are NOT passed to the PMC (Program-
mable Machine Control), unless they are programmed in the macro body.

Depending on the control system, the system parameters related to the M-function Macro Call
are listed in the following tables:

FANUC SYSTEM 0
M-code Macro Call - 10 options available
Parameter Number Description <Valid data 1 - 97>
230 M-code that calls the custom macro stored in program 09020
231 M-code that calls the custom macro stored in program 09021
232 M-code that calls the custom macro stored in program 09022
233 M-code that calls the custom macro stored in program 09023
234 M-code that calls the custom macro stored in program 09024
235 M-code that calls the custom macro stored in program 09025
236 M-code that calls the custom macro stored in program 09026
237 M-code that calls the custom macro stored in program 09027
238 M-code that calls the custom macro stored in program 09028
239 M-code that calls the custom macro stored in program 09029
FANUC SYSTEM 10/11/15
M-code Macro Call - 10 options available
Parameter Number Description <Valid data 1 - 97>
7080 M-code that calls the custom macro stored in program 09020
7081 M-code that calls the custom macro stored in program 09021
7082 M-code that calls the custom macro stored in program 09022
7083 M-code that calls the custom macro stored in program 09023

A ETGieer NOBob ks Pefie

CUSTOM CYCLES

FANUC CNC Custom Macros

259

7084 M-code that calls the custom macro stored in program 09024
7085 M-code that calls the custom macro stored in program 09025
7086 M-code that calls the custom macro stored in program 09026
7087 M-code that calls the custom macro stored in program 09027
7088 M-code that calls the custom macro stored in program 09028
7089 M-code that calls the custom macro stored in program 09029
FANUC SYSTEM 16 /18 / 21
M-code Macro Call - 10 options available
Parameter Number Description <Valid data 1 - 97>
6080 M-code that calls the custom macro stored in program 09020
6081 M-code that calls the custom macro stored in program 09021
6082 M-code that calls the custom macro stored in program 09022
6083 M-code that calls the custom macro stored in program 09023
6084 M-code that calls the custom macro stored in program 09024
6085 M-code that calls the custom macro stored in program 09025
6086 M-code that calls the custom macro stored in program 09026
6087 M-code that calls the custom macro stored in program 09027
6088 M-code that calls the custom macro stored in program 09028
6089 M-code that calls the custom macro stored in program 09029

Machine tool manufacturers often provide time saving procedures into their hardware. Creating
new M-functions to activate such procedures is consistent with the use of 'normal' M-functions. In
order not to conflict with any existing functions, it is not unusual to see M-functions that have
three digits (for example, M123) or even belong to a certain group that shares certain characteris-
tics (for example, M201 to M220).

The various function codes specified as subprogram calls are used less frequently, and in many
ways are similar to the described macro calls. Always consult the Fanuc reference manual for de-
tails relating to a particular control model features.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

260 Chapter 21

G13 Circle Cutting Cycle

In the previous chapter, a roughing and a finishing macro is described for circular cuts. It is
quite common in CNC programming to machine a circular pocket. Whether it is a utility circular
pocket with minimum tolerances (such as most counterboring operations), or a pocket where the
diameter and the depth must be of very high accuracy, there is a way to define a macro or a special
cycle (macro based) for this type of machining. Once developed, the macro should be very easy to
use, minimizing the possibility of an input error. Some controls do have G13 macro command,
for example, many Yasnac controls. A Fanuc macro can be developed that will be fully consistent
with the Yasnac input - such a program can become more portable between different controls, if
designed properly. Yasnac's G12 cycle is similar to G13, except that it is used for conventional
milling, rather than climb milling.

In order to appreciate the effect of possibilities offered, consider the two most common ways of
cutting a circular pocket - both methods are illustrated in Figure 52:

Figure 52

Typical toolpath applied to cutting
a circle (circular pocket)

a/ Straight lead-in/lead/out

b/ Tangential lead-in/lead/out

a b

In the left example (a), rather a crude but simple circular cutting takes place. Because of the tool
mark that is typically left on finished wall, this method is only good for circular cuts when the sur-
face finish and the overall dimensions are not too critical. The second method (b), shown on the
right, is much more precision oriented, but it requires several extra calculations that may slow
down the programming process. In both cases, the cutting tool plunges into the depth at the center
of the circular pocket, then continues as a linear motion, before any arc can be profiled. The cut-
ting motion also terminates at the center of the circle. There is a very important reason for this
toolpath - to maintain precision dimensions and tolerances, cutter radius offset has to be in effect,
and it must be applied only during a linear motion! The CNC operator stores the cutter radius in
the appropriate offset register and the macro will do the rest - all without the G41 cutter radius
offset command.

The macro that will be stored as a cycle will eliminate the need for the straight linear lead-in
and lead-out and will use only three major motions - see Figure 53:

(J Lead-in arc - from the circular pocket center Step 1 in the illustration
(4 Full circle machining Step 2 in the illustration
(1 Lead-out arc - to the circular pocket center Step 3 in the illustration

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

CUSTOM CYCLES 261

MACRO 08111

D (#7)
- #31 —=
—— ~— VAR
see text
/ - N
) @N
\
—= DIA —=— E Circle cutting cycle G13
T (#20) »}T« -) VAR | # Description
Radius offset // D | 7 | Circular pocket diameter
NUMBER :
T |20 | Cutter radius offset number
Start macro at XY center :
and at pocket bottom F | 9 | Cutting feedrate
#331#33 [~—
- #32

G13 D- T- F-

Figure 53

lllustration for the development of G13 circle cutting macro cycle (climb milling mode)

The cutter radius offset using the G41 command will not be necessary, since the macro reads
the radius offset value directly from the control register. In fact, it would be wrong to program
G41. Without the G41, only arcs can be programmed, without linear lead-in and lead-out tool
motions. The Figure 53 also shows assignments of the three variables used in the macro.

The variable data is short for this macro - only three assignments are required:

[The pocket size - normally given on the drawing as a diameter Variable D (#7)
[d The tool offset number where the cutter radius is stored Variable T (#20)
(1 The cutting feedrate Variable F (#9)

There are macros similar to this one that require the pocket radius input rather than its diameter.
Selecting the input of a diameter is a better choice, since circular holes or pockets are dimensioned
as diameters. For the internal calculations, when the radius is needed, a simple calculation will
store the radius as one half of the given diameter.

For most machining applications, the climb milling mode built into the macro (cycle G13) is the
desirable way of metal removal. However, the macro is not suitable to cut in conventional mode,
should such need arise. For that purpose, another macro (cycle G12) will have to be developed.
Essentially, both macros will be the same, except the machining order of 1-2-3 for the climb mill-
ing mode will be reversed to 3-2-1 for the conventional mode (GO3 will change to G02). Both
macros (cycles) are listed in this chapter.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

262 Chapter 21

Macro Call - Normal

Since the previous macro examples, there has been some order established in their numbering.
Including the last chapter, this is the 11th macro example, so its number should be O8111. If the
stored macro is called the normal way, the way any other macro was called so far, the program
number must be assigned first. For example, if the macro program is assigned number O8111, the
macro will be called by a simple G65 statement:

G65 P8111 D60.0 T56 F200.0

1" where...
D = (#7) Circular pocket diameter
T = (#20) Cutter radius offset number Do not enter the actual cutter radius with T !!!
F = (#9) Cutting feedrate for the circle machining

This is an entirely normal macro and the program number assigned is not too important, as long
as it is unique and follows standard conventions.

Macro Call - as a Special Cycle

However, this type of machining has all the features expected in a fixed or canned cycle - after
all - it is a genuine fixed cycle. In order to appear as a cycle to the CNC programmer and/or oper-
ator, it also has to have the ‘look and feel’ of a true cycle, which means it needs a G-code. So far,
that has not been achieved with the G65 macro call statement. In order to transfer the macro into a
true fixed cycle, two changes must take place:

(1 Assign the macro program number from the fixed range provided by the control system
(1 Register the selected G-code (or the M-code) as a parameter setting

From the several tables listed earlier in this chapter, it is apparent that regardless of the control
system, the number of macros that can be called as cycles using the G-code is only 10 (ten), and
these macros must be stored within a range of program numbers beginning with 09010 and ending
with 09019. This range is common to all control systems (a similar range is also available for the
M-functions). For reasons of logical association and practical convenience, the new macro will be
named 09013. Of course, this change will also change the G65 macro call - but nothing else -
there is no other benefit:

G65 P9013 D60.0 T56 F200.0

So far, the change was only superficial. One more step is critical and necessary - and that is to
register the preferred G-code into a control system parameter. Since the G13 G-code has been se-
lected as the cycle command (macro call), the number 13 has to be registered in the parameter that
corresponds to the calling program, which is 09013.

Here are the parameters for all three different control groups, that will be applied to the exam-
ple presented (G13 stored as 09013) - see the earlier tables for complete listing:

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

CUSTOM CYCLES 263
Fanuc control system Parameter Number
Fanuc 0 0223
Fanuc 10/11/15 7053
Fanuc 16/18/21 6053

Only after all these settings have been done, the new macro can be called as a true cycle. In this
case, it will be cycle G13, which looks like many other Fanuc cycles:

G1l3 D60.0 T56 F200.0

The variable assignments have not changed, just the method of calling them. The G-code could
have been any number within 1 to 255 range, with the exception of G65, G66 and G67. Before
the actual macro can be evaluated, keep in mind that M-codes can be set in a very similar way,
also using the above tables.

The circular pocket cycle macro is fairly simple to understand, particularly with the commented
descriptions on the side. Yet, the definition of variable #32 may be a bit unusual and may need
some explanation. Study the macro first, then the 'mystery' of the #32 will be revealed.

09013 (G13 CIRCULAR MILLING CYCLE - CLIMB MILLING)

#31 = ABS[#7]1/2 Radius of the circular pocket - guaranteed positive

#11 = #4001 Store current G-code of Group 01 (motion commands)
#13 = #4003 Store current G-code of Group 03 (absolute/incremental)
#32 = #31-#[2000+#20] Actual radius of the circle to cut - see explanation !!!
IF [#32 LE 0] GOTO998 Generate error if the radius offset value is too large
#33 = #32/2 Calculated lead-in/lead-out radius

G91 GO3 X#32 I#33 JO F#9 Lead-in arc toolpath - Step 1 or R#33 instead of I/J
I-#32 Full circle toolpath - Step 2 R not allowed for 360°
X-#32 I1I-#33 J0 Lead-out arc toolpath - Step 3 or R#33 instead of I/J
G#11 G#13 Restore original G-codes of Group 1 and Group 3
GOTO0999 Bypass error message

N998 #3000 = 13 (OFFSET TOO LARGE) Alarm condition - refers to actual offset value setting
N999 M99 End of macro

%

For conventional milling, the G12 cycle can be developed by making only a very few changes:

09012 (G12 CIRCULAR MILLING CYCLE - CONVENTIONAL MILLING)

#31 = ABS[#7]1/2 Radius of the circular pocket - guaranteed positive

#11 = #4001 Store current G-code of Group 01 (motion commands)
#13 = #4003 Store current G-code of Group 03 (absolute/incremental)
#32 = #31-#[2000+#20] Actual radius of the circle to cut - see explanation !!!

IF [#32 LE 0] GOTO998 Generate error if the radius offset value is too large

#33 = #32/2 Calculated lead-in/lead-out radius

G91 GO02 X#32 I#33 JO F#9 Lead-in arc toolpath - Step 3 or R#33 instead of 1/
I-#32 Full circle toolpath - Step 2 R not allowed for 360°

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

264 Chapter 21
X-#32 I-#33 J0O Lead-out arc toolpath - Step 1~ or R#33 instead of I/
G#11 G#13 Restore original G-codes of Group 1 and Group 3
GOTO0999 Bypass error message
N998 #3000 = 12 (OFFSET TOO LARGE) Alarm condition - refers to actual offset value setting
N999 M99 End of macro
%

Detailed Evaluation of Offset Value

Some programmers may be surprised to find that the cutter radius offset G41 is not required.
Does that mean the pocket diameter cannot be controlled for high precision requirements? Not at
all. At the machine, the CNC operator will handle the offset exactly the same way as in any other
application. Here is how it works. There are two main elements that make the offset work, with-
out the G41 command.

[The T (#20) variable in the G13 call refers to the offset number that stores the cutter radius
[The definition of variable #32 in the macro that retrieves the actual stored offset amount

In the example, variable #20 (T) was stored with the value of 56 (tool length and radius shared
in the same registry). The pocket diameter is 60 mm, so a suitable cutter should be greater than
60/3 (to clean the pocket bottom), say &22. If the difference between the pocket and cutter radius
is too great, the pocket bottom surface will not be fully cleaned. During setup, under ideal condi-
tions, the CNC operator inputs the cutter radius (11 mm), as the radius offset value, into the offset
number 56 (assuming a system parameter is set to radius entry). So far, nothing is really new.

The 'problem' is with the way Fanuc handles this information for different features of its con-
trol models. Fortunately, at least in this case, the model control numbers do not matter too much,
because the same approach applies to the Fanuc 10/11/15/16/18/21 controls (Fanuc 0 is excluded
because of its limited applications). The solution is based on these two very important features:

[Tool offset memory type three groups - A, B, and C
[The number of available offsets two groups - 200 and less, and over 200

Both of these groups have been described earlier in Chapter 11 - Tool Offset Variables. In this
chapter, the focus is on the offsets for the radius setting, using the two related tables:

200 OFFSETS AND LESS
Offset Memory A Memory B Memory C
Number | Geometry /Wear| Geometry Wear Geometry - D Wear - D
1 #2001 #2001 #2201 #2401 #2601
2 #2002 #2002 #2202 #2402 #2602
3 #2003 #2003 #2203 #2403 #2603
4 #2004 #2004 #2204 #2404 #2604
5 #2005 #2005 #2205 #2405 #2605
6 #2006 #2006 #2206 #2406 #2606

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

CUSTOM CYCLES 265
200 #2200 #2200 #2400 #2600 #2800
OVER 200 OFFSETS
Offset Memory A Memory B Memory C
Number | Geometry /Wear| Geometry Wear Geometry - D Wear - D
1 #10001 #10001 #11001 #12001 #13001
2 #10002 #10002 #11002 #12002 #13002
3 #10003 #10003 #11003 #12003 #13003
4 #10004 #10004 #11004 #12004 #13004
5 #10005 #10005 #10005 #12005 #13005
6 #10006 #10006 #11006 #12006 #13006
999 #10999 #10999 #11999 #12999 #13999

From the tables is clear that the definition of variable #32 in the macro body will be different
for the type of offset memory and the number of available offsets. Actually, the input of variable
#32 (as shown in the macro) is only good for memory Type A, and less than 200 offsets:

#32 = #31 - #[2000+#20] SHARED OFFSET REGISTRY
For the example, #32 returns the result of:
#32 = 30.0 - #[2000 + 3] = 30.0 - #2003 = 30.0 - 11.0 = 19.0
Study the calculation - try to understand how Fanuc system evaluates it - understanding many
other macro features, including those that are nor so obvious, will follow very quickly. A similar
example applies to the same settings as above, but is used only for the Type C offset memory and
more than 200 offsets - note that both the Geometry and Wear offsets must be considered:
#32 = #31 - [#[12000+#20] + #[13000+#20]1
Since the Type C offset memory is quite common on the modern high end control systems, but
the number of available offsets is typically less than 200, let’s look at one last example - Type C
offset memory, with 200 or less offsets available - again, note that both the Geometry and Wear

offsets are considered, but with different variable numbers:

#32 = #31 - [#[2400+#20] + #[2600+#20]1

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

266 Chapter 21

In last several examples, many typical macro applications were evaluated, each time with a little
different focus. Although the presented applications have been shown using particular program-
ming techniques, the principles described here apply to many similar applications, particularly
those that apply to various tool offsets in different ways.

Counterboring Application

The G13 cycle is ideal to be used for counterboring previously drilled holes using a circular
toolpath with an end mill rather than by a plunge cut. Program example that follows the drawing
(Figure 54) uses the previously stored circular cutting macro G13:

Figure 54

Drawing example for using circle
cutting macro (special cycle G13)

L
[
m
\

Material: Aluminum plate 100 x 75 x 20 mm

50

00031

N1 G21

(PART ZERO = LOWER LEFT CORNER AND TOP OF PART))
<... spot drill and drill operations ...>

N31 TO03 T03 = 10 mm end mill

N32 M06 Tool change

N33 G90 G54 GO0 X25.0 ¥37.5 S750 MO3 Left counterbore location

N34 G43 z2.0 HO3 MO8 Clearance above part

N35 G01 z-7.5 F250.0 Feed-in to counterbore depth

N36 G13 D25.5 T53 F180.0 Macro call as a cycle appears 'natural’
N37 GO0 z2.0 Clearance above part

N38 X75.0 Right counterbore location

N39 G01 z-7.5 F250.0 Feed-in to counterbore depth

N40 G13 D25.5 T53 F180.0 Macro call as a cycle appears 'natural’
N41 G28 z2.0 M09 Machine zero return

N42 M30 End of program

%

Since the Offset Memory Type A selection (shared offsets) is part of the macro, the stored radius
offset must have a different number than the stored tool length offset. A difference of 50 is how in
the example (HO1 + 50 => DS51).

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

EXTERNAL OUTPUT

Normally, the current value of any variable can be viewed right on the control display screen.
Often, that is not enough. For example, when troubleshooting a macro that contains many vari-
ables, it may be necessary to check the current variables in different parts of the macro, at differ-
ent processing stages. Fanuc controls provide several commands that can output variable values
and various characters, through the RS-232C port (I/O interface - Input/Output) to various exter-
nal devices. These commands are called External Output Commands, and there are four of them:

POPEN PCLOS

and

BPRNT DPRNT

Port Open and Port Close Commands

In order to make any two computer based communication devices to transfer data, the devices
must be set to a single matching mode that allows the data transfer. When transferring data from a
Fanuc control system, the output port has to be initiated, which means the port has to be set to an
open state. Once the data transfer had taken place, the control port must be closed - set to a closed
state. On the receiving end, the device used will have to be set to the state that can accept the data.
Term used in communications between devices are read and write, reader and puncher, upload
and download, input and output, ON and OFF, etc.

The command POPEN (Port Open) provides the connection to an external Input/Output device
(I/0 unit). The two typical units in this category are the fape puncher/reader unit and a personal
computer. The variable data can be stored on a punched tape (the older method), or on a computer
disk as a text file (the modern method). In a custom macro, the POPEN command must always be
set at the beginning, before the transfer data are specified. Fanuc control outputs the DC2 control
code. Think of the POPEN as the ‘connect’ command.

The command PCLOS (Port Closed) cancels the connection to an external Input/Output device
(I/0 unit). When all data had been transferred, the communication lines must be closed with the
PCLOS command. Fanuc control outputs the DC4 control code. Think of the PCLOS as the ‘dis-
connect’ command that should never be programmed, unless the POPEN command is in effect.

A macro containing the POPEN command at the beginning
must also contain the PCLOS command at the end

267

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

268 Chapter 22

Data Output Functions

BPRNT and DPRNT functions must always be used between the POPEN and PCLOS functions

BPRNT and DPRNT functions are used to execute the actual data transfer in two different forms:

d BPRNT ... transfers the output in a binary format, useful for data only
1 DPRNT ... transfers the output in a plain text format, data & text, (ISO or ASCII text)

In practice, the majority of outputs to external devices are in the DPRNT text format, partially
because of its output of decimal places. Text format output is easier to read and interpret, whether
it is printed as a hard copy or displayed on the computer screen.

Each format takes several arguments, describing:

(1 One or more characters to be output - usually headings and similar identifications
(1 Variable number that is being printed
(4 Control of decimal places

There is a small, but important difference in the format for each command.

BPRNT Function Description

The BPRNT function writes a binary output. The programming format is shown in Figure 55.

BPRNT funCtIOI"I format Figure 55

Format structure of the BPRNT function

Character(-s) to print

Variable number

Number of digits after
the decimal point

[@a#b]c]...]

In the BPRNT function, the characters can be the capital letters of the English alphabet (A to Z),
all digits 0 to 9, and several special characters (+ = / * ...). An asterisk symbol (*) will be out-
put as the space code. The End-Of-Block character (EOB) will be output according to the setting
of the ISO code. Variables that are vacant (null variables) cannot be output on older Fanuc System
Model 6 (alarm #114 will result in this case), however, they will be output as 0 on Fanuc controls
10/11/15/16/18/21. All variables are stored with a decimal point and the number of decimal
places after the decimal point must be specified in brackets, following the variable number (see
item c in the above illustration).

A ETGieer NOBob ks Pefie

EXTERNAL OUTPUT

FANUC CNC Custom Macros

269

DPRNT Function Description

The DPRNT function writes a plain text output. The programming format is shown in Figure 56.

DPRNT function format

Character(-s) to print

Number of digits after
the decimal point

[a#b[cd] ...]

Variable number

Number of digits before
the decimal point

Figure 56

Format structure of the DPRNT function

In the DPRNT function, the characters can be the capital letters of the English alphabet (A to Z),
all digits 0 to 9, and several special characters (+ - / * ...). Asterisk (*) will be output as the
space code. The End-of-Block character (EOB) will be output according to the setting of the ISO
code. Variables that are vacant (null variables) cannot be output on Fanuc 6 (alarm #114 will re-
sult), however, they will be output as 0 on Fanuc 10/11/15/16/18/21. Since the output format de-
pends on the setting of some system parameters, let’s look at the settings of the relevant
parameters. There is a different between some controls.

Parameter Settings - Fanuc 10/11/12/15

In order to make the data transfer work correctly, some system related parameters have to be set

accordingly. The following parameters have to be set for Fanuc controls 10/11/12/15:

Parameter Number

Setting value

Type

0021

Output device interface number for foreground

Byte

0 where the setting value can be ...

wn =

4: DNC1

Puncher to be connected with CD4A of BASEO (RS-232C interface 1)
Puncher to be connected with CD4B of BASEO (RS-232C interface 2)
Puncher to be connected with CD4 of serial port (RS-232C interface 3)

13: Puncher to be connected with CD3 of serial port (RS-222 interface)
15: MMC DNC operational interface
16: MMC UPLOAD/DOWNLOAD interface

Note that PUNCHER can be any external RS-232 device.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

270 Chapter 22

During the control operation, press the RESET button when the required parameters are set.
Normally, select the suitable ‘Puncher to be connected with ... setting, depending on the configu-
ration of the communications devices. The actual message may be different.

NOTE - some minor distinctions apply between Fanuc 10/11 and Fanuc 15 !

Parameter Number Setting value Type

This series of parameters control the various
settings of the external interface, such as the
I/0 device number (up to six), baud rate,

5001 to 5162 stop bits, etc. The parameters in this range Byte
should be set in coordination with the setting
of parameter 0021.
Parameter Number Setting value Type

This parameter controls the spacing of
7000 - Bit #7 (PRT) leading zeros, for the output generated by Bit
the DPRNT command.

1= where Bit #7 is ...

0: A space is output when reading zero with the DPRNT command
1 Nothing is output when reading zero with the DPRNT command

The DPRNT function always requires the specification of both number of digits (items ¢ and d in
the illustration) - before the decimal point (the integer number of the variable) and after the deci-
mal point (the actual number of decimal places).

Metric vs. Inch Format

In typical CNC applications, the metric format (G21) takes 5 digits before the decimal point,
and 3 digits after the decimal point (eight digits total). Since the decimal point is legitimate in this
format, it is often referred to as the 5.3 format or [53] format. When the English measurements
units are used (G20), the inch format takes 4 digits before the decimal point, and 4 digits after the
decimal point (also eight digits total). Since the decimal point is legitimate in this format as well, it
is referred to as the 4.4 format or [44] format. Either of these two commands are applicable to
all controls. For example, if the local variable #100 specified in the macro program contains a
value of 123.45678 units (metric or English), and the DPRNT command is specified as ...

DPRNT [X-VALUE***#100[53]] ... each asterisk outputs a space

.... then the output value will depend on the parameter setting (varies for different controls):
X-VALUE 123457 ... If the parameter #7000 is set to 0 ... OF:

X-VALUE 123.457 ... if the parameter #7000 is set to 1

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

EXTERNAL OUTPUT 271

Variables must be numeric values with no more than the total of eight digits

It may be necessary to experiment with the output formatting, to match personal preferences.

Parameter Settings - Fanuc 16/18/21

In order to make the data transfer work correctly, some system related parameters have to be set
accordingly. The following parameters have to be set for Fanuc controls 16/18/21:

Parameter Number Setting value Type

I/O channel:
0020 Byte
Selection of an input/output device

I where the setting value can be ...

The device associated with Channel 1 is selected (JD5A connection on main board)
The device associated with Channel 1 is selected (JD5A connection on main board)
The device associated with Channel 2 is selected (JD5B connection on main board)
The device associated with Channel 3 is selected (Option1 board connection)

wh o

Select the suitable device setting, depending on the configuration of particular communications
devices. Typically, the I/O channel is set within the following range of parameters:

Parameter Number Setting value Type
This series of 150 parameters control the
various settings of the external interface, such
as the I/O device number (up to three), baud .
0100 to 0149 rate, stop bits, etc. The parameters in this Bitand Byte
range should be set in coordination with the
setting of parameter 0020
Reader/puncher interface is set by the following parameters:
1/0 Channel Parameters used Type
0 #101, #102, #103
1 #1111, #112, #113 Bit and Byte
2 #112, #122, #123

Note - Fanuc cassette or floppy cannot be used for puncher output !

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

272 Chapter 22

The last parameter setting is for the control of leading zeros:

Parameter Number Setting value Type
This parameter controls the spacing of leading

6001 - Bit #1 (PRT) zeros, for the output generated by the DPRNT Bit
function

1> where bit #1is ...

0: A space is output when reading zero with the DPRNT command
1: Nothing is output when reading zero with the DPRNT command

As mentioned earlier, the DPRNT command always requires the specification of both number of
digits (items c¢ and d in the illustration) - before the decimal point (the integer number of the vari-
able) and after the decimal point (the actual number of decimal places). For example, if variable
#100 contains a value of 123.45678, and the DPRNT command is:

DPRNT [X-VALUE***#100[53]]

then the output value will depend on the parameter setting (varies for different controls):
X-VALUE 123457 ... If the parameter #6001 is set to 0 ... OF:

X-VALUE 123.457 ... If the parameter #6001 is set to 1

Variables must be numeric values with no more than the total of eight digits

Structure of External Output Functions

Although the POPEN function is required before either BPRNT or DPRNT can be used, it is not
necessary to immediately close the receiving device after the data transfer had been completed. If
another data transfer is required, just call another BPRNT or DPRNT command. Program the
PCLOS function only after a/l transfers have been completed. The two following macro structures
are allowed, with the second one as a preferred method:

Macro structure - Version 1

POPEN
BPRNT or DPRNT ... With variable specifications
PCLOS

POPEN

A ETGieer NOBob ks Pefie

EXTERNAL OUTPUT

FANUC CNC Custom Macros

273

BPRNT or DPRNT

PCLOS

... With variable specifications

Macro structure - Version 2

POPEN
BPRNT or DPRNT
BPRNT or DPRNT

PCLOS

Output Examples

.. with variable specifications

.. with variable specifications

The following macro example will download the current values of variables within the range of
100 to 149 to an external device, such as a computer disk file (in text format):

& Macro call:

G65 P8200 I100 J149

& Macro definition:

Example of macro call - range of variables specified

08200 (VARIABLE SETTINGS PRINT-OUT)

POPEN Initialize the active communications port

#1 =0 Reset variable counter

WHILE[#1 LE [#5-#4]] DO1 Limit loop to selected range of variables

#2 = #[#4+[#1]1] Current variable number - as a variable

#3 = #4+#1 Current variable number - as a number (no # symbol)
DPRNT[VAR #3[5] ***DATA #2[57]] Formatted output includes text, variable ID and value
#1 = $#1+1 Increase the counter of variables by one

END1 End of loop

PCLOSE Close the active communications port

M99 End - can be M30 if used as main program

%

Virtually any data that is stored in the control system can be output as a hard copy or displayed
on the screen. Macro programs using the DPRNT function can be very useful in keeping records,
creating a log of program flow, debugging a troublesome macro, and many other applications.
Some common examples are shown in the next section.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

274 Chapter 22

Blank Output Line

The main purpose of the DPRNT function is to provide a formatted output. If it is necessary to
output a blank line using the DPRNT command, the macro block must call the DPRNT with no ar-
guments, which means the DPRNT command will use empty brackets:

DPRNT[] Outputs a blank line

Multiple consecutive blank lines may be achieved by repeating the DPRNT [] command in the
next block, or use a loop - one macro block statement is equal to one blank output line.

Columns Formatting

If the output of data is columnar, for example, for a series of numerical data, the printed column
should be easy to read. There are no macro features that can output a specific font, but a suitable
font can be selected when formatting the text paragraph(-s). Suitable fonts for printing columns
are monospaced fonts types, such as Courier™, Lucida™, and a number of others.

DPRNT Practical Examples

In the next examples, the DPRNT function will used to format three frequently required output:

Date

DPRNT [OUTPUT*DATE : **#3011 [80]1] will output OUTPUT DATE: 20051207
Time

DPRNT [OUTPUT*TIME: **#3012[60]] will output OUTPUT TIME: 162344
Work Offset

DPRNT [G54***X**§522]1 [33] ***Y**§5222[33]***Zz**}5223[33]]

will output the value of G54 XYZ settings, with 3 places before and 3 places after the decimal
point. Note the distribution of spaces to improve readability (monospace font recommended):

G54 X -564.381 Y -412.758 Z 000.000

Many other applications can be added to these examples, for example, the calculation of cycle
time, number of parts machined, total machine run time, etc.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

23 PROBING WITH MACROS

In the modern world of CNC technology, many machine features have been controlled through
a part program or a dedicated macro program. It is quite normal in typical CNC programming to
use Automatic Tool Changer (ATC), Automatic Pallet Changer (APC), coolant functions, spindle
functions, etc., in addition to the automation of the toolpath itself. With macros - and suitable ma-
chine and control features - the possibilities can go a big step further and automate the whole man-
ufacturing process, especially various dimensional measurements. Within such a manufacturing
process, tolerances of important part features are extremely important. Various depths, widths,
diameters, thicknesses, distances and many other miscellaneous engineering requirements have to
be handled as reliably and accurately as possible. With macros, these processes can be automated
and high quality machining results can be achieved with little or no human interference during the
part production.

The most important aspect of this approach is to perform various measurements and inspections
directly at the CNC machine. Operations before, during, or after machining can be made possible
with the use of the so called 'probing' devices, consisting of a ball-shaped precision probe (usu-
ally), connected electronically to the control system and controlled by suitable macro programs.

This concept of probing requires a solid background in the probing technology, a subject that is
not in itself part of the programming process, but serves as the initial building block. Before some
probing macros can be introduced, it is important to understand what the probing is all about, and
get familiar with the fundamental concepts. This short background will make it easier later, when
actually developing real probing macros.

Probing technology changes rapidly - always check for the newest capabilities

The most important part of the probing concept is the interaction between the macro program
and the probing device (and its numerous activities). The CNC system, using customized macro
programs, fully supports reading and writing of data between the program processing and the ma-
chine activities. External CMM machines are only marginally related to this subject.

What is Probing ?

In a machine shop environment, there are two important words that relate to the same objective
- to measure certain features of a three dimensional object - a part to be completed. These two
words are probing and gauging (also spelled gaging). Often, these two words are used inter-
changeably, as both apply to similar activities.

Typically, the word probing is used when the measuring device includes special spherical stylus
that is program controlled to move from one part of the measured object to another part of the
same object. The other word - gauging - is used for all other types of measurement.

275

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

276 Chapter 23

The focus of this chapter is in the area of probing, since a special program is always required.
Many operators in a machine shop are familiar with the concept of probing a part before or after
the machining process. This type of probing is commonly known as coordinate measuring, and
the specially designed precision machines that perform this process are called Coordinate Measur-
ing Machines, known as the CMM. The CMM method only measures the existing dimensions and
can record and register the measured values - but it cannot change any of the measurement. Often
it is called the pre-process and post-process method. There is a program involved in running a
CMM station, but it has nothing to do with CNC and macros.

The probing method that is applied during CNC machining has many benefits. In this method,
the probing device is mounted as one of the tools in the machine tool magazine, using a specific
tool number. The actual probing process is controlled by a specially developed macro program.
The benefit of this method is that when the measurement is done, the results of the measurement
can be evaluated by the macro program and changes can be made while the part is still within the
work area of the machine tool. This is done by using the three groups of offsets that are available
on various CNC machines (see Chapter 11). A thorough knowledge of the work offset, the length
offset and the radius offset is extremely important for understanding how probing macros (some
can be very complex) perform the measurements and change the individual offset settings. As this
method of probing always takes place at the CNC machine during its operation, it is also called the
in-process method or in-process gauging. Whichever name is used, this method of probing is
based on the application of a touch-trigger device, called a fouch probe. Understanding the princi-
ples behind probes and their functions is definitely helpful.

Touch Probes

Around the year 1973, the first modern probe was developed. It was called a kinematic
touch-trigger probe. This probe design functions on the principle of a multi-directional switch.
The main part of the probe is called a stylus, which is a precision ball-shaped tip, ranging in ball
diameters and located at the tip of the arm-like stem or extension. The key element of this design
(and any probe design) is that the spring loaded pivoting stylus deflects when it touches the contact
point and returns to its original position after the deflection. The spring loaded stylus is located
against three bearing points, and each of these bearing points is also an electrical contact point.

During the contact with the measured surface (or feature), the center of the stylus deflects at one
or two of the bearing points. An electrical contact is established and results in a trigger signal that
is registered by the measuring system. Probe technology has evolved in the last few decades, and
is well advanced. As any other technology, it evolves constantly, and for any macro programmer
it is important to keep in touch with its advancements.

Probing Technology Today

Although the kinematic touch probe principles are applied to this day, the original technology
was very dependent on the trigger effect caused by the actual pressure on the bearings. This
method has been very accurate, but had its disadvantages. The major disadvantage was that the
length of the probe (the stem) had to be kept fairly short, thus preventing measurements of
hard-to-reach and deep contact areas of the measured part.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

PROBING WITH MACROS 277

The new technology is called the active silicon strain gauge technology, and does not generate
the trigger effect by pressure, but by sensing the contact force that builds up during contact be-
tween the highly sensitive stylus and the measured point. Since even a very low contact force can
be detected using this method, accuracy is guaranteed for probes even with long stems. Other im-
provements include high accuracy while measuring complex three-dimensional surfaces, higher
repeatability, and increased life of the probing device.

Probe Calibration

In order to get the expected - and very necessary - high accuracy readings from a probe, the
probing device must be calibrated. When the probe touches the contact point on the measured
surface, a certain force is generated, causing a bend, mostly a very slight one. This small amount
of travel that is caused by the bending (or stylus deflection) is called pre-travel. Calibrating the
probe means to compensate the final reading of the measurement for the amount of the pre-travel.
In some respects, this phenomena is very similar to the backlash of a CNC machine. Later in this
chapter, basic probe calibration issues will be described.

There are many methods of calibrating a probe, one of the most common ones is touching a spe-
cial precision gauge located on CNC machine tools (sometimes called artifact). During the cali-
bration, the effective size of the stylus is determined (as compared to its actual size). Also during
the calibration, it is very important to calibrate the probe stylus in all directions that will be mea-
sured. Keep in mind that the direction of the pre-travel motion is critical to accuracy of the final
measurement.

Calibration is necessary not only for a new probe, but in many other instances as well. The fol-
lowing list should help to make an informed decision when a probe calibration is necessary:

(1 New probe or new stylus of the probe has been installed

Start of a new machining job that employs probing

When a probe or stylus had been replaced or repaired

When the ambient operating temperature has changes dramatically

When probing feedrate had been changed

When repeatability deviates from expected values by an unexpected amount

I Ty Ny Ny

Other considerations may also have an effect.

Feedrate and Probing Accuracy

Note the above comment relating to the feedrate. All probing should be done at the same
feedrate in all directions. Some macro programmers prefer to 'hard-code' the feedrate into the
macro, others use a variable for the same purpose. Either way, if the feedrate had been changed,
the calibration process should be repeated.

Also a very practical approach is to disable the feedrate override on the CNC operating panel,
so the feedrate is always guaranteed to be 100% of the programmed value. To disable the feedrate
override in the macro, use the system variable #3004=2 (feedrate override disabled) or
#3004=3 (feedhold and feedrate override are disabled). Other variations are also possible. Make
sure to program #3004=0 at the end of the macro, to remove the restrictions when not needed.

A ETGieer NOBob ks Pefie

278

FANUC CNC Custom Macros

Chapter 23

Probing Devices on CNC Machines

Any machine shop can benefit from measuring the part during a machining cycle. The probe
unit is mounted in the tool magazine, with is own number and offset settings, just like any other
tool. The major difference from other tools is that a probe does not rotate in the spindle when it is
used. In-process gauging is closely tied to the macro program that controls the machining, mea-
suring and adjustments of offsets in the control system. Macro features such as branching, condi-
tional testing, looping, use of different variables and access to control features, are all important
for programming the various probing devices.

In-Process Gauging Benefits

There are many benefits in measuring the various part features during the machining cycle -
they are all relate to the increased productivity and overall accuracy. The most important benefits
can be summed up into several items:

a

a

Part location, length, and diameter of the cutter used can be measured automatically

All three offset memory groups can be calculated automatically and corrected as needed during
machining, individually or collectively

Reduction of machine idle time - setup of the part can be greatly simplified - there is no need to spend
time on exact physical setup. The actual position of the part and its alignment with the machine axes

and/or fixture datums can be corrected mathematically rather than physically

Reduction in the level of scrap - since the actual machined dimensions are monitored
by the macro program and the probing cycle, any required offset correction is made automatically

Inspection of the first finished part does not require its removal from the machining area
Broken tools can be detected and proper action followed as specified by the macro program
Initial investment in the technology (equipment and skills) is returned much faster than other methods

CNC operator’s confidence level is increased and unattended machining can become a reality

Types of Probes

Various manufacturers offer many different models of probes. When selecting probes, the main
issue is, of course, the probe accuracy. However, accuracy of a probe is not usually an issue,
which means the customer looks for additional features when selecting probes. In this context, it is
very important to understand is that a probe in itself does not measure, so the question of probe
accuracy is purely academic.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

PROBING WITH MACROS 279

Probe can be evaluated in terms of repeatability, which does influence the accuracy of the prob-
ing system. In terms of accuracy, the most important aspect is the accuracy of the complete sys-
tem, with all its parts, not just its individual components. When selecting probing devices today,
the most important feature is the probe purpose - current one and one in the future.

Probe Size

In the touch-trigger method of probing, the size of the probe is generally determined by the na-
ture of the work. Obviously, the probe must fit into the area to be measured. That means a small
diameter probe will allow access to more features of the part, such as crevices and small openings.
Large probe sizes are usually part of a generally heavier configuration, and a slightly lower sys-
tem accuracy should be expected.

Probe Selection Criteria

Not all probes are created equal - there are several considerations that must be made when se-
lecting a probe for in-process CNC measurement (gauging). The considerations relating to the
probe selection can be summed up in the following few groups:

(d Machined part ... its size and shape

(1 Control system capabilities ... Standard and optional features

(1 Expected tolerances ... engineering data - are they realistic ?
(1 Additional and optional features ... may be beneficial in the long run

(1 Associated costs ... initial costs as well as ongoing costs

Machined Part

Without a doubt, the nature of the work determines what probe or probes will be used, based on
the current technology. The initial nature of the work may require different probes for different
jobs. Although most probes can be exchanged with relative ease, the measuring system always has
to be able to accommodate all varieties. That means looking ahead to future part designs and be
able to establish the need for a measuring system based on current and future requirements.

Areas of focused consideration should also include the actual part size, its geometrical complex-
ity (general shape), the features on the part that require measuring (critical features), the actual
probe size (small or large), and its accuracy, if used with a long stem, as well as its capability to
be positioned normal (i.e., perpendicular) to the measured surface.

There are also other factors related to the part, such as its material and the thickness of the mea-
sured feature. Some soft materials, such as plastics, may be deflected or even deformed by the
probing device, so other techniques will have to be used. The most common method in this type of
application is a non-contact probe, offered by all major probe manufacturers. Often a twin probe
(one with two styluses, sometimes called a bullhorn probe) can be equipped with one contact and
one non-contact probe. Some probing heads can be equipped for both types, and changed either
manually or automatically. Automated probe change is particularly attractive to high volume man-
ufacturing (such as in the automotive industry).

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

280 Chapter 23

Control System Capabilities

When the probing device is applied to CNC machines, the capabilities of the system are a very
important consideration. Typically, the most mistakes are made at the time of purchase by failing
to establish future needs. Many probe manufacturers offer upgrades, but after a few years the
compatibility may fade away. It may be difficult - or even impossible - to upgrade a simple equip-
ment at a later date to a more sophisticated equipment.

Equally important consideration are the specifics of the CNC machine. Small parts of today
may not cause problems, but large parts of tomorrow may not fit into the thinking of today.

Expected Tolerances

Design engineers place tolerances on critical dimensions. In a brief reminder, a dimensional tol-
erance is the allowed deviation from the nominal size specified in the engineering drawing. In
probing, particularly during the probe selection process, it is important to realize that tolerances
too tight (those with a very small allowable range of deviation) make the machining process much
more expensive in all respects. However, if the engineering need is there, the cost has to be ac-
knowledged and absorbed. For tight tolerances, probes have to be selected with this initial consid-
eration. Tight tolerances also require longer measuring times, because many more points or hits
have to measured to guarantee such accuracy. For example, a tight tolerance requirement on a
hole diameter will require more than the standard three points to measure the diameter.

Additional and Optional Features

Many optional features are available for various CNC probing devices. Some of the most im-
portant features are the fixed orientation of the probe versus its capability to be oriented into dif-
ferent (non-standard) directions. Additional flexibility is welcome, if its costs can be justified.

Associated Costs

There are different types of probes available and - more often than not - a higher price indicates
a more sophisticated, higher level, probing device - a better device. Always check the unit fea-
tures and future service availability from the manufacturer or the vendor.

CNC Machine Probe Technology

Every probe installed on the CNC machine must be able to communicate with the control sys-
tem of the machine tool. On CNC machining centers, the probe is mounted in a holder similar to
the tool holder for standard cutting tools, also stored in the tool magazine, and is placed into the
spindle the same way as any other tool, when required. On the CNC lathes, the probe is mounted
into the tool turret, also occupying one station. In either case, the purpose of the probe is to touch
the desired feature on the part, make the measurement and transmit a signal to the control system
with the results. There are three major transmission methods available for the triggered signal:

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

PROBING WITH MACROS 281

¢ Optical Signal Transmission
¢ Inductive Signal Transmission

¢ Radio Signal Transmission

In the later development, an infrared method of signal transmission has also been available from
several manufacturers, although the optical and the inductive probing methods form the majority
of applications.

Regardless of which method of signal transmission is applied, the transmission system uses
three important components:

« Component 1:

Probe and the probing module, are mounted on a stem. The optical and the radio method of
transmission both work on the same principle - the module receives the signals from the control
system and transmits the signals from the probe as well as the status of the internal battery that
provides the necessary voltage. The probe and the probing module can be used in a standby mode,
or a continuous operating mode. If the setting is a standby mode, the unit acts only as a receiver
that is waiting for the transmitting signal. Once the signal is received, the standby mode is auto-
matically changed to the continuous operating mode. Once the operating mode takes over, the sta-
tus signals from the probe and battery are transmitted to the machine communication module.

« Component 2:

Machine communication module, used to establish contact with the probe module. Through sig-
nal transmission, a cable and its unique wiring configuration, the machine communication module
will be power connected to the machine interface unit.

« Component 3:

Machine interface unit is used to convert the received signals from the probe into a format the
control system can interpret. Using the interface unit, several light indicators show the probe and
battery status.

Optical Signal Transmission

In the optical signal data transmission, an infrared light beam is used to transfer probe signals
collected at the time of contact, from the probing device to the CNC system. Light emitting diodes
(LED) installed on the probing device emit signals towards a pre-tuned receiver. The receiver
may pickup signal from as far as 10 feet (3 meters). The power source for the probes that use opti-
cal signal data transmission is a small battery installed in the probing device body. A small disad-
vantage of optical signal transmission system is the requirement of a clear light path between the
probe and the CNC control. The majority of the CNC machining centers installed today use the
optical method of data transmission.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

282 Chapter 23

Inductive Signal Transmission

In the inductive signal data transmission area, transmitted signals use electromagnetic induction
as they are transferred across a small air gap. The air gap is between the two induction modules,
one located on the probing device, the other located on spindle of the CNC machine tool. Both are
linked to the CNC system. The inductive signal data transmission is also quite common on CNC
machining centers and CNC lathes. Probably the major benefit of the inductive signal transmis-
sion probes is the ease of maintenance and the lack of a battery power. The probe module receives
power from the machine module and passes back various probe signals.

Radio Signal Transmission

In the radio signal data transmission, the probing device generates a radio frequency signal. The
power source for the probes that use radio signal data transmission is a small battery installed in
the probing device body. This method of transmission is commonly used on large CNC machines.
Using a radio signal data transmission is very practical on CNC machines that are physically
large, and in situations where an optical system would not be suitable to function properly over a
distance greater than about 10 feet (3 meters).

Probing systems using radio transmission are based on the principle of high frequency radio
waves that carry the data signals. The signals are carried between the probing device and the CNC
system of the machine tool. Additional benefit of radio signal transmission is the elimination of
the direct and clear path of the signal, needed for other probing methods.

In-Process Gauging

In-process gauging has already been mentioned several times in this chapter, but always in a
rather oblique way. The next few paragraphs will attempt to throw some light and more details of
this extremely important subject.

For many unmanned machining stations, for example in an FMS cell (Flexible Manufacturing
System), or similar cellular manufacturing, a provision must be made in the CNC program to al-
low the checking and adjusting of critical dimensions directly on the part, preferably while it is
still mounted in the fixture. As the cutting tool wears out, or because of many other causes, the ex-
pected dimensions may fall into the 'out-of-tolerance' zone. Using a probing device and a suitable
macro program, the In-process gauging option offers a very satisfactory solution. The CNC pro-
gram for the In-Process Gauging option will contain some quite unique format features - it will be
written parametrically, and will be heavily dependent on the usage of macro programs, often very
deeply nested.

If a CNC machine shop is a user of the In-Process Gauging feature, there are good chances that
other control options are also installed and available to the CNC programmer. Some of the most
typical options are probing software, tool life management, macros, various detectors, tool length
and tool radius readers, etc. Some of this technology goes a little too far beyond standard CNC
programming, although it is closely related. Companies that already use the CNC technology suc-
cessfully, will be well advised to look into these options to remain competitive in their field.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

PROBING WITH MACROS 283

The idea of making the first manufactured part exactly to specifications developed into the im-
plementation of in-process gauging. In some cases, this method of measuring can totally eliminate
off-line measuring systems (CMM), or at least complement them. By employing the full in-pro-
cess gauging exclusively at the machine, CMM systems can be often eliminated (at least for cer-
tain applications) and the cost and downtime of the off-line measurement is also eliminated. There
are several technological requirements for this technology to be successful.

(1 The probing system must be used in the toolholder, just as any other tool

The probing system is stationary (non-rotating) and often locked in an oriented position
Macro program option has to be available within the control system

Proper interfaces between the probe and control system have to be established

Special macro programs have to be developed and maintained for the measuring

Uoodd

In terms of economics, in-process gauging does extend the total cycle time, often quite signifi-
cantly. Even if not every part in the batch is measured, the average cycle time must be considered.
When the CNC machine tool is used as a measuring device, the equipment involved in the various
stages of measurement has to be certified or calibrated. Calibrating of the probing device is done
on a verified gauge (gage), using a macro program. The principles of calibration have been dis-
cussed earlier.

Many CNC machine tools incorporate a unique design that allows for the inclusion of a cali-
brated artifact within the working cube of the machine. Working cube is defined by the combined
maximum amount of travel along the X-axis, Y-axis and Z-axis. If only two axes are considered,
the term 'working cube' is changed into a working area or a working envelope.

Features to be Measured

In order to determine what features of the part can be measured on a CNC machine, a great deal
depends on the type of probe used. In their basic applications, virtually every probe can measure
the following features of a part or within a particular part:

(d Center measurement
External diameter
Internal diameter
External length - width
Internal length - width
Depth of a feature
Angle of a feature

I W Wy Iy Iy

There are many other part features that can also be measured and some are more common than
others. The most typical item in this group covers the part feature location, such as a center of a
hole, distance between two points, diameter, and so on. Since the typical part feature is normally
specified by at least the X and Y axes, it means a macro development that uses a combination of
the various results and manipulating them mathematically. All this takes place within the macro
body. In many cases, directly returned value are not used as such, but for calculations of a differ-
ence in values between two measurements. How this difference is handled depends on the particu-
lar application. Normally, the calculated value is used to adjust a particular offset setting.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

284 Chapter 23

There are many other simple and complex measuring methods available to probing macros, but
the basic concepts remain the same at all times, regardless of the measuring method used. In the
next few application examples, various common options will be explored in some detail, along
with the evaluation of typical probing procedures. Included diagrams always show the measured
object (feature) and the points of contact with the measured object. For example, P1, P2, P3, P4,
etc., indicate the probe position at the time of contact along the selected axis, the identification Cn
indicates a center location number, the letter W indicates the width or length (either one can also
be applied to the feature depth), the letter D specifies the measured depth, and so on. In most
probing cases, the probe diameter (commonly known as the stylus diameter) must always be
known, but in some calculations, the stylus diameter is not an important at all (any reasonable dia-
meter can be used). Most calculations often use the ABS macro function, in order to guarantee a
returned value that is always positive. In any macro, the positive and negative values of a calcula-
tion (the returned value) are very important and must always be applied correctly.

Center Location Measurement

Measuring the center location (position) applies to measurement of flat and circular objects and
part features, such as flat walls, edges, holes, bores, rods, shafts, grooves, even cones and tapers.
The measuring also includes cylindrical calibrating devices, if required. In terms of implementa-
tion, the center location measurement is probably the most common probing operation in macros.

Figures 57 and 58 illustrate one significant mathematical principle that is the very basis of mea-
suring many center locations, especially those applied to part features related to walls (sides) of
the part (external and internal).

— N Figure 57
O O
5 | a R | N Center measurements C1 and C2
| are between two machined features,
é (B ‘ é such as walls:
+ + + ‘
‘ External (C1) and Internal (C2) walls

Stylus diameter is not critical

C1 = ABS[P1-P2]/ 2 ... Single axis check is shown
C2 = ABS[P3-P4] / 2

In both illustrations, two objectives are implied that relate to macro program development. One
objective is to find the width measurement between two external walls, shown as C1 dimension in
the left illustration above. The other objective is to find the width measurement between two infer-
nal walls, shown as C2 in the right illustration above. The drawing example in Figure 57 illus-
trates two parts that are independent of each other and solves the C1 and C2 calculations at the
same time. Note that the probe ball diameter (stylus diameter) has no effect on the result.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

PROBING WITH MACROS 285

C Figure 58

Center measurement C is between
two machined features, such as slots

P1
P3
P4

Stylus diameter is not critical
/ ‘ ... single axis check is shown

C = ABS[[[P1+P2] - [P3+P4]] / 2]

A similar approach is equally logical when trying to find the center of a circular feature (radius
or diameter), whether it is external or internal. Although one example is shown for finding the
center on an external feature (such as a rod, boss, spigot, etc.), and the other example is shown
for the internal application (such as a hole diameter), they share the same mathematical formula
that can be used in the macro to calculate the center of a circular feature, regardless whether it is
external or internal. The formula applies to any single axis.

Figure 59 and Figure 60 illustrate the mathematical principle behind measuring a center location
as applied to features related to external or internal part diameters.

- Figure 59
O
Center measurement C1 and C2
of a circular external feature

P1
P2

Stylus diameter is not critical
P3 .. two axes are shown

——C2
P4

C1=ABS[P1+P2]/ 2
C2 = ABS[P3+P4]/ 2

In the previous center finding application applied to two linear features, either axis could be
used in the formula, and only one axis measurement was required. The most important element in
this example is that only two measurements along a single axis are required, whereby in the two
circular examples, an actual point is needed, so both axes must be considered in the calculation of
the center of a circular object and four measurements per diameter are required.

A ETGieer NOBob ks Pefie

286

FANUC CNC Custom Macros

Chapter 23

C1=ABS[P1+P2] /2
C2 = ABS[P3+P4]/ 2

C2

Figure 60

Center measurement C1 and C2
of a circular internal feature

Stylus diameter is not critical
... two axes are shown

As both illustrations show, the calculating formulas are identical. The only difference is the
measuring direction, which has to be incorporated in the macro.

Measuring External or Internal Width

The external (outside) or internal (inside) length or width between two features is established by
picking and registering two established point positions, one on each end of the measured object.
Only a single axis is used for this purpose, the other axes remain idle. Two registered positions
(axes X or Y) are normally required. The actual width is found by subtracting one measured posi-
tion from the other, considering the styles radius.

Figure 61 shows the external feature width measurement on the left and internal measurement
on the right - stylus diameter B is very important in both types of measurement.

W1

N

3
é)

5

w2

L |

B = Probe stylus diameter
W1 = ABS[P1-P2]-B
W2 = ABS[P3-P4]+B

Figure 61

External and internal width
measurement

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

PROBING WITH MACROS 287

Measuring Depth

Another commonly measured feature of a part is the depth. Depth is normally associated with
the Z-axis, but the probing method can be used along the X or Y axes as well, for example, to
measure a shoulder depth or a step depth.

Depth is measured by subtracting two measured positions along the axis. Logically, the depth is
established in the same way as the external or internal length (width).

Figure 62 shows the mathematical principle behind the depth calculation.

Figure 62

—=| D1 |=—
External and internal depth
o measurement

g O e
-) Pa Df

D1 = ABS[P1-P2]
D2 = ABS[P3-P4]

Other features can be measured by applying the same logical approach. Amongst them, measur-
ing external or internal diameters and measuring angles are the more common applications.

Measuring External Diameter

External (outside) diameter can be a stud, a core, a boss, a spigot, or any other round object that
is an external cylinder, including a calibrating device. To measure an external diameter, measured
points on the diameter have to be established. Each measured position is registered and the exter-
nal diameter is calculated mathematically, through the formulas in the CNC macro program. An
approximate external diameter must always be known. Typically, an external diameter is mea-
sured by establishing three points on the diameter.

Measuring Internal Diameter

Internal (inside) diameter can be any hole, such as a counterbore, circular pocket, or any other
internal cylinder, including a calibrating device. To measure an internal diameter, measured
points on the diameter have to be established. Each measured position is registered and the inter-
nal diameter is calculated mathematically, through the formulas in the CNC macro program. An
approximate internal diameter must always be known. Typically, an internal diameter is measured
by establishing three points on the diameter.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

288 Chapter 23

Measuring Angles

Angle measurement can be used for many useful purposes, one of them being to adjust the coor-
dinate system of the machine tool by rotating it. To illustrate the idea, think of the ease of pro-
gramming a rectangle where all four sides are parallel to the axes, then programming the same
rectangle located at an angle within the machining area. Rotating the coordinate system allows the
simplicity of programming a straight rectangle, but locating it at an angle during the machine
setup. By rotating the coordinate system to match the part orientation, the setup can be done very
efficiently. Fanuc offers optional feature called Coordinate System Rotation (G68-G69). Macro
is the best choice if this option is not available.

Changing of Set Values

Since probing is controlled by the CNC macro program, the macro can contain decisions based
on the result of the probing process. For example, a tolerance can be entered in the macro body,
the probing result registered, evaluated and compared with the stored values. Decision whether to
adjust the offset, recut the part, or even reject it, can be made automatically. This is a very sophis-
ticated method of programming that requires a lot practice.

Calibration Devices

Calibration devices - they are sometimes called artifacts or master gauges - installed on a CNC
machine tool are - in their simplest definition - the master reference for all other references. In a
more technical explanation, such a device is a physical substitution for the actual machined part
whose fixed position within the working cube has been established previously, under precise con-
ditions, such as controlled temperature and humidity. This may sound a bit complicated, but it
does indicate the main purpose of a calibration device.

In general terms, there are two basic types of calibration devices design:

Calibrating device - Type 1

Previously established physical substitution of the actual machined part. The benefit of this type
is that it can be calibrated directly on the CNC machine and results in a very high precision of the
whole machine measuring environment.

Calibrating device - Type 2

A general purpose reference item, such as a high precision calibration sphere or a calibration
block. Either design is used by measuring against known relative sizes and locations of the cali-
bration device, for example walls of a cube or a top surface of a sphere.

The main purpose of the calibration device is to evaluate the integrity of the CNC machine tool
geometry, before any cutting tool is applied to the production. In addition, the device also serves
as means to compensate for even a very slight expansion or shrinkage of the measuring system,
due to the effects of heat or cold.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

PROBING WITH MACROS 289

Checking the Calibration Device

During the machining cycle, the critical sizes (features) of the part are established by comparing
the desired dimensions with the previously calibrated feature. Typically, the calibration device is
measured before any actual machining and any deviation error is established at start. This error
can be caused by several factors, mainly those relating to extreme heat or extreme cold.

Once the integrity of the calibration device has been established, the machined part is measured.
The result of the part measurement is considered erroneous, if the errors detected during the prob-
ing process are compared with the dimensions of the calibration device and found outside of speci-
fied limits. This is an important consideration, because it shows that the accurate measurement of
the part is determined by the accuracy of the calibration device setting, rather than the whole ma-
chine tool system.

Centering Macro Example

As a practical example of a macro using a probing device, the following centering macro is one
of the most common applications of a probe. Its purpose is to find a center of a circular object,
typically a calibrating ring or a hole in the part that has to be measured. The center of the circular
object will be used as the new setting of G54 work offset (macro can be modified for any other
work offset number).

00032 (MAIN PROGRAM)

N1 G21 Metric input

N2 G17 G40 G80 Startup block

N3 G90 GO0 G54 X0 YO XY motion to the center of hole (near center must be known)
N4 G43 z25.0 H19 Clear position above work

N5 GO01 Z-5.0 F250.0 Feed to probing depth (*)

N6 G65 P8112 D175.0 F80.0 Macro call with assignments D=measured dia, F=feedrate
N7 GO0 225.0 Retract above work

N8 G28 z25.0 Return to machine zero (Z-axis)

N9 M30 End of main program

%

08112 (CENTERING MACRO - METRIC)
(USES 6 MM DIAMETER BALL)

IF[#7 EQ #0] GOTO996 Check if measured diameter is missing

IF[#9 EQ #0] GOT0997 Check if probing feedrate is missing

IF[#9 GT 100.0] GOTO998 Max. recommended probing feedrate is F100.0 mm/min
#3004 = 2 Feedrate override disabled

#10 = #4003 Store current setting of G90 or G91

#7 = #7/2 Change diameter of input to radius

#101 = #5041 Store current X-axis coordinate

#102 = #5042 Store current Y-axis coordinate

M51 Turn Blast ON to clear probe - M-code will vary
G04 X2.0 Allow 2 seconds for the air blast

M52 Turn Blast OFF - M-code will vary

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

290 Chapter 23

G91 GO1 X[#7-5.0] F[#9*4] Move 5mm away from right side target (X+ motion) (*)

G31 X[#7+5.0] F#9
#103 = #5061

G90 GO1 X#101 F[#9*4]
G91 X-[#7-5.0]

G31 X-[#7+5.0] F#9
#104 = #5061

G90 GO1 X#101 F[#9*4]
#105 = [#103+#104]/2
#106 = #101-#105

G91 GO1 Y[#7-5.0]

G31 Y[#7+5.0] F#9
#107 = #5062

G90 GOl Y#102 F[#9*4]
G91 Y-[#7-5.0]

G31 Y-[#7+5.0] F#9
#108 = #5062

G90 GOl Y#102 F[#9%*4]
#109 = [#107+#108]/2
#110 = #102-#109

Skip the rest of X motion upon contact (X+)

Store X-position at skip signal (X+)

Move back to the start position in X

Move 5mm away from left side target (X- motion) (*)
Skip the rest of X motion upon contact (X-)

Store X-position at skip signal (X-)

Move back to the start position in X

Average the X+ and X- reading

Calculate the shift amount for G54 along the X-axis
Move Smm away from top side target (Y+ motion) (*)
Skip the rest of Y motion upon contact (Y+)

Store Y-position at skip signal (Y+)

Move back to the start position in Y

Move Smm away from bottom side target (Y- motion) (*)
Skip the rest of Y motion upon contact (Y-)

Store Y-position at skip signal (Y-)

Move back to the start position in Y

Average the Y+ and Y- reading

Calculate the shift amount for G54 along the Y-axis

(

#2501 = #2501-#106 Update the X-coordinate for G54 work coordinate system
#2601 = #2601-#110 Update the Y-coordinate for G54 work coordinate system
(

#3004 = 0 Feedrate override enabled

G#10 Restore original G90 or G91

GOTO0999 Bypass error messages

N996 #3000 = 106 (DIAMETER MISSING) Issue alarm if measured diameter missing

N997 #3000 = 107 (FEEDRATE MISSING) Issue alarm if feedrate missing

N998 #3000 = 108 (FEEDRATE TOO HIGH) Issue alarm if feedrate too high

N999 M99 Macro end

%

Clearances marked with (*) must be greater than the radius of the probe stylus

Note that the specified feedrate applies to the probing feedrate, not the positioning feedrate. Ar-

bitrarily, the positioning feedrate is four times greater, but will not exceed 500.0 mm/min. Flexi-
bility can be added to the macro for more precise control in this area. This is a working macro and
satisfies the goals set earlier. The possible changes or improvements to the macro would be han-
dling of the probe ball diameter (radius), feedrate, and the clearances before reaching the target
position.

With this probing macro sample, virtually any other probing macro can be developed. Many
features of the sample macro will not change from one type of probing to another. The major
change will be in the inclusion and manipulation of different formulas.

One critical command that is unique to macros is the G31 command - Skip Command. It will be
explained at the end of this chapter.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

PROBING WITH MACROS 291

Probe Length Calibration

Probes are used not only for measuring within the XY plane, they can also check depth, along
the Z-axis. Just like centering macro (center position calibration) is designed to update the work
coordinate system, this macro sets the tool length offset for the Z-axis. There are several methods
available, however their basic functionality is the same. Figure 63 shows the setup for a vertical
CNC machining center.

‘ Figure 63
L._J Machine zero Probe length offset setting

— T (#20)

Program zero (Z0)
PART

7,

The assignment of variables will be simple. Strictly speaking, only a single variable will be re-
quired - the tool length offset number - where the measured length will be stored. For more flexi-
bility, also included can be the Z-axis position to measure, although it will normally be zero. The
skip function G31 will need a feedrate and a small amount of extra travel. The macro will have the
feedrate built-in, so the probing will be consistent for all jobs. The extra travel amount (known as
the overshoor), will also be built-in, which makes it easier to develop the macro for both metric
and inch units of measurement.

00033 Main program example

N1l G21 Units of measurement selection

N2 G17 G40 G80 Startup block

N3 90 GOO G54 X300.0 Y250.0 T99 XY-position for the probing - also calls Tool 99
N4 MO6 Tool 99 to spindle

N5 G65 P8113 z0.0 T99 Call macro for Z0 and tool length offset 99
N6 M30 End of main program

%

08113 (PROBE LENGTH OFFSET)
(*** DO NOT CHANGE SEQUENCE NUMBERS ***)

IF[#20 EQ #0] GOTO99 Alarm issued if offset number is not assigned
G40 G80 G49 Startup block reaffirmed

IF[#26 NE #0] GOTO98 Check if Z-position is assigned

#26=0 If Z-position is not assigned, it defaults to Z0.0

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

292 Chapter 23
N98 #3004 = 2 Disable feedrate override
#11 = #4001 Store current G-code of Group 01
#13 = #4003 Store current G-code of Group 03
#16 = #4006 Store current G-code of Group 06
IF[#16=20.0] GOTO20 Check if main program is in inches
IF[#16=21.0] GOTO21 Check if main program is in millimeters
N20 #32 = -0.25 Set extra travel in inches
#9 = 2.0 Set probing feedrate in inches per minute
GOTO100 Bypass metric values if inches selected
N21 #32 = -6.0 Set extra travel in millimeters
#9=50.0 Set probing feedrate in mm/min
N100 (PROBING STARTS HERE) Start of probing routing
#33 = #26+#32 Calculate the final Z-position
G90 G31 Z#33 F[#9*2] Make the initial probe touch at a faster feedrate
G91 GO0 Z[ABS[2*#32]] Retract twice the amount of stored extra travel
G90 G31 Z#33 F#9 Make the final probe touch at a slower feedrate
#100 = #5063 Register Z-position at skip signal
#[2000+#20] = #100 Transfer the new value to the selected offset
GOTO0999 Bypass alarm message if processing normal
N99 #3000=99 (OFFSET NUMBER MISSING) Issue alarm if offset number not assigned
N999 G91 GOO G28 z0 Return Z-axis to machine zero
#3004 = 0 Enable feedrate override
G#11 G#13 G#le Restore previous G-codes of Groups 01, 03, 06
M99 End of macro
%

Note a few special programming techniques used in the macro. Even when developing a similar
custom macro, some of these programming techniques come very handy in the development pro-
cess of any macro. Some changes may be small, such as change of the variable number that stores
the offset, if the control requires it.

Here are descriptions of the techniques used:

Technique 1

The technique that may be controversial is the Z-axis value. If the Z-position is missing in the
G65 call, the macro will define the variable #26 as zero, automatically. Some programmers may
question this approach and choose not to agree with it. Under proper conditions, there is nothing
wrong with this technique.

Technique 2

The IF-THEN shortcut has been avoided, so the macro is more flexible for a variety of control
models (not all models support the IF-THEN functions). More GOTOn statements will needed.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

PROBING WITH MACROS 293

Technique 3

The macro will work equally well for metric probing or probing in English units.

Technique 4

Inch and metric values have been built-in. Once verified as suitable, they will be the same for
every probe that will need to be measured along the Z-axis. This is one adjustment that may need
to be done, to suit particular probing setup.

Technique 5

Controlled feedrate has also been built-in (metric and inch). The reason is that to get consistent
results in probing, consistent feedrate is mandatory. Once optimized for the best performance, it
will remain the same for any probing.

Technique 6

The probe touched the part twice - once to reset its position in the stem (if necessary), the sec-
ond time it was the actual probing that was registered as offset.

Other techniques have been used in this and other examples throughout the handbook. The main
objective here was to show some probing macros and explain their design. There was no attempt
to describe the actual workings of probing devices from different manufacturers. Many manufac-
turers offer their own macros, suitable for their equipment.

Skip Command G31

Through the probing macros, there was special G-code used - one that is not a part of any other
standard program or macro designed for machining. This command is G31. In the manuals, it is
usually described as the 'skip command' or 'skip function’'. In many ways, this command behaves
the same as the linear motion GO1 - so why cannot GO1 be used? The answer is simple. During a
GO01 motion, the target position is established by the XYZ coordinates and the motion takes place
at a programmed feedrate. During G31 motion (also at a programmed feedrate), the XYZ target
coordinates are also established. The difference is in the result. GO1 command will normally com-
plete the motion to the target position. This is not acceptable for probing, because the target posi-
tion is always inside the material and the probe would crash. The target position must be inside of
the material, otherwise there would be no guarantee that the probing would take place.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

294 Chapter 23
PROBING ZONE PROBING ZONE Figure 64
G31 |, ‘ G31 G31 Skip Command

‘ i i ‘
i ih

| [l 1y |
TT 7T
Ii\ li\
IS e
1/ Lo

PROBE MOTION
AS PROGRAMMED

’7 “ MOTION SKIPPED

UPON CONTACT

Figure 64 illustrates the general concept of the skip command.

In the top part the programmed motion and direction is illustrated. Note the end of motion is in
the material. The bottom illustration show what happens when the probe makes a contact with the
material. It skips the remainder of the motion and registers the position, as per macro instructions.

The amount of motion into the material does not have to be large, but it must be greater than the
largest dimensional deviation expected.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

24 ADDITIONAL RESOURCES

Many valuable resources have been provided in this handbook. No single publication can cover
all details of the topics presented, particularly those as complex as Fanuc Custom Macros. Several
additional resources are suitable to include at the end. One deals with the major macro restrictions
and limitations when it is processed at the CNC machine, others suggest additional reading.

Limitations During Macro Execution

This handbook covers the subject of macro program development is a fair detail, which means it
has been restricted to the coverage of various programming methods and special techniques. An
experienced CNC operator who works with macros on a daily basis knows that there are many
significant differences that are unique to macros during their execution (processing):

Single Block Setting

In many ways, the single block switch setting (ON/OFF switch) at the control panel works the
same way for macro processing as it does for processing of standard programs. There are excep-
tions - these are the most notable:

¢ Macro call commands G65-G67 ... will not stop in single block mode
¢ Mathematical (arithmetic) expressions ... controlled by a parameter setting
¢ Control commands ... controlled by a parameter setting

As in some other examples, this is one of the control-specific settings and checking the control
specifications supplied by the manufacturer is very important.

Block Number Search

When the control system is in the macro execution mode (macro processing mode), the block
number search (sequence number search) cannot be done.

Block Skip Function

Block Skip Function is identified in the CNC program with the slash symbol (/). The same slash
symbol is also used in macro expression as a symbol for arithmetic division of two values. Nor-
mally, the block skip slash code is used at the block beginning, but some controls support a slash
code being programmed in the middle of the block. When a macro that contains the slash code for
division is processed by a control system that also supports mid-block skip function, the control
will evaluate the expression first.

295

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

296 Chapter 24

If the slash symbol is part of a mathematical expression enclosed in square brackets, it will be
processed as a division symbol, not a mid-block skip function:

#31 = 10.0 Initial value set
#32 = [#31/2] Division operation - #32 = 10.0/2 = 5.0
#33 = #31/2 Mid-block skip - #33 = 10.0 if block skip ON

The simple example shows the possibility of a serious error as a result of not knowing the con-
trol system well. Most controls do not allow mid-block skip function, only and the beginning.

MDI Operation

Often it is necessary to test one of more program blocks in the Manual Data Input mode (MDI)
rather than from the control memory. If the program block to be executed in the MDI mode is a
macro call using the G65 P- command, the control system will process this request normally and
calls the specified macro by its number and assignments, as expected. However, the MDI mode
cannot be selected to call a macro program, while the automatic operation is in effect.

Edit Mode

Parameters that control the editing of subprograms or macro programs within the range O8000
to 08999 and 09000 to 09999 can be set to allow or disallow editing or deletion of programs in
these ranges. If a macro (or a subprogram) is proven correct and used frequently, it should be pro-
tected by a parameter setting from being accidentally edited or even deleted.

Control Reset

When the RESET key is pressed at the control panel, all local variables within the range of #1 to
#33 will be automatically cleared. Also cleared will be common variables within the range #100
to #149. When a variable is cleared, it is set to a null value, which means it is equal to #0 (not
zero). If it is necessary to keep these variables from being cleared by the RESET key, a parameter
can be changed for that purpose. Check the Parameter Manual of the control system for details.

Pressing the RESET key also returns the macro processing (execution) to the main program
level (top level). In practice, it means all active subprograms, macros, conditions, loops (such as
DO statements), etc. will bee cleared (cancelled).

Feedhold Switch

The purpose of the feedhold switch (or button) is to stop axis motion in the middle - between the
start position and the target position. When the feedhold switch is activated (turned ON) during a
macro program execution, the axis motion stops affer the macro statement has been processed.
Unrelated to the feedhold switch setting, the axis motion also stops when the operator presses the
RESET key, or when an error condition (alarm) is generated.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

ADDITIONAL RESOURCES 297

Knowledge for Macro Programming

Any publication that offers CNC macro programming is generally considered a publication con-
taining many advanced programming topics. Ideally, only experienced CNC programmers should
open this handbook and learn from it. However, that is not always the case, as many junior and
less experienced programmers find themselves in the position to develop a macro programs.

All advanced subjects depend on a certain 'basic core' knowledge and understanding of some
general principles that are necessary to advance from one level to the next - this handbook is no
exception. As a publication, it has been designed to stand on its own - there is no relationship to
any other publication or technical text mentioned (all references are only suggestions).

Throughout the handbook, many different subjects were presented including many that have no
equivalent in manual programming or even CAM programming. All subjects in this category are
new subjects, and the purpose of the handbook was to explain them in details. Hopefully, that has
happened. As macro programming is considered a high-level programming, it is heavily depend-
ent on programming practices from various lower levels. These practices are not described in this
specialized handbook. For those users who wish to either review or even learn the basics of CNC
programming in details, the best selling CNC Programming Handbook, also published by Indus-
trial Press, New York, NY (www.industrialpress.com), offers all the answers.

In particular, thorough understanding of the following items is absolutely critical as the core
knowledge, in order to develop macro programs, even at their lowest level:

(1 General skills

Manual programming experience
Math applications

Setup practices

Machining practices

Control and machine operation

[I N N Ny

This above list can be expanded quite a bit, but it has addressed the necessary basics as is. Let's
evaluate these items individually. Some have been mentioned at the beginning, others are new in
this section.

General Skills

Even before entering the field of macro programming, any CNC programmer should possess
several skills that are used all the time in the programming process. It should be understood that
macro program development is not normally assigned to a person with limited experience, or a
person who has no knowledge of the various basic CNC processes and associated machining, in-
cluding some experience in manual programming. The ability to interpret engineering drawings is
important and basic at the same time, but for macros, the ability to see two or more such drawings
as possible candidates for a macro development is even more important. There are many features
in macro programming that can be closely related to the operation of a fully featured high-level
scientific calculator. Building formulas, using variables, programming loops, etc., is no different
for a sophisticated calculator then for a macro program running a CNC machine tool.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

298 Chapter 24

Manual Programming Experience

Manual programming requires the knowledge of G-codes, M-codes and hundreds of other con-
trol supported features that form the structure of any part program. Macro programming method
is part of a manual type program development - the only computer involved in the process is the
CNC system that processes the macro - a CNC system is not designed to create macros. In this
handbook, many macro examples or specific applications have dealt with subjects such as pro-
gram formats, modal and non-modal commands and functions, subprograms, offsets, fixed cy-
cles, data settings, automatic cornerbreaking, and many others. In essence, these subjects are all
part of the standard manual programming. It is impossible to create any significant macro pro-
gram without a good knowledge of these and other subjects.

Math Applications

CAM style programming needs virtually no math knowledge, while manual programming de-
pends heavily on math. Macros do not require additional math knowledge, only a different way of
applying it. Basic arithmetic, algebra, trigonometry, etc., fall into the 99 % + of all math needed
in CNC programming. Macros involve math calculations similar to those done on a pocket calcu-
lator. As many examples in the handbook have illustrated, mathematical applications are a very
important part of macro development.

Setup Practices

How to machine a part for production is a critical skill for any CNC programming, including
macro programming. Along goes the knowledge of machine setup, fixtures, tooling, etc. Al-
though macros do not cover any physical setup, many macro activities are setup related at the con-
trol level - for example, to assign work offset, tool length offset, cutter radius offset, etc.

Machining Practices

Machining practices include all machine shop oriented subjects that are as basic as general un-
derstanding of speeds and feeds, concepts of workholding, fixtures, tools, materials, coolants,
etc. Within these skills are other skills, more focused, and more specialized - for example, various
machine shop formulas, special machining techniques and operations, unique materials, etc., all
help to develop a better macro.

Control and Machine Operation

Operation of a CNC machine is just a little more than an operation of the CNC system. Know-
ing the control system of a particular machine tool is important to every part programmer or ma-
chine operator - knowing the same control system even better and in more depth is absolutely
critical to a macro programmer. Even the smallest and least significant feature of the control unit
may have significant effect on the macro development, particularly in the areas of defaults, off-
sets, parameters, system variables, and all other standard and unique features. For any macro de-
velopment, being familiar with the control and its associated machine is very important.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

ADDITIONAL RESOURCES 299

Complementary Resources

The above section mainly related to the subject of knowledge for macro programming - even
while similar topics have already been stated in the first chapter of the handbook. The last section
has also presented many new subjects, mainly those covered within the pages of this publication.

Industrial Press, Inc.

For those users that seek either a refresher update or for those that need to learn the basic sub-
jects from ground up, Industrial Press, Inc. is an established publisher of many technical books
that can help. For the purpose of learning the pre-macro subjects in the CNC programming field,
the best-selling CNC Programming Handbook offers just about all answers in great details. This
very popular publication has been accepted as an excellent in-depth resource for virtually all ev-
eryday CNC programming projects.

The complete listing of all CNC Programming Handbook chapters is listed on the enclosed CD

Internet

The internet and the world wide web is an excellent source of finding many CNC oriented sub-
jects. There are many resources - some are superior to others, but there are also those that are me-
diocre and some even outright wrong. Macros belong to all these categories. Most macros posted
on the internet are well intended, but may only work for a particular machine/control combina-
tion. Many - even those that work - lack any significant documentation. In other words, use the
good old caveat emptor approach. Internet can be a mine of gold or a pit of gravel.

Practical Programming Approach

No publication that covers the subject as involved as of custom macros (user macros) can thrive
on the provided examples only. Hopefully, this handbook has offered a valuable source of infor-
mation, tips, tricks, shortcuts, as well as thoroughly documented examples relating to Fanuc Cus-
tom Macro B control option. Although a part of CNC programming for more than two decades,
custom macros have been very severely underutilized. Although they are an option of the control
system, macros are becoming a very attractive programming method that has a unique place in a
CNC machine shop - they enhance current manual programming methods, but they do not replace
CAD/CAM systems or conversational type programming. If fact, macros offer features that no
other programming method can achieve. Whether new to macros, or just picked up the handbook
for reference, you will find that once you start programming with macros, it will be very difficult
to go back. That does not mean macros are useful for all applications, but for the suitable applica-
tions, macros really bring many superior benefits.

In closing, and in the form of a few final notes, here are some tips summarized from the hand-
book, tips that may worth keeping handy when developing a macro program:

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

300 Chapter 24

Macro Programming Tips

¢ Always have an objective - decide on the main reason for the new macro

4 A macro should not do everything - shorter macros are better than a large one
¢ Plan ahead and plan well - get organized

¢ Do not count on various default values and settings

¢ Develop a flowchart or at least a pseudo-code before writing the real code

¢ Draw sketches, draw views, draw other pictures - visualize each macro stage
¢ Assign variables meaningful addresses, if possible

4 Use common variables only when they benefit the macro

¢ Write the core of macro first, add ‘bells and whistles’ when macro is verified

¢ Do not sequence every block in a macro - only the reference blocks

¢ Do not change sequence numbers in a macro - include warning message

¢ Write portable macros - make them compatible with many other controls

& Write one macro to work for either metric or inch input

& Watch for endless loops

¢ Force alarms for erroneous or missing input

¢ Save all current settings before changing them - restore them when macro exits
¢ Document macros internally

¢ Include programmer’s name and date of last revision

¢ Protect special purpose macros from editing and deleting

¢ Never assume anything - or as they say 'Assume nothing!'

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACRO COURSE OUTLINE

The above title should actually read 'Suggested Macro Course Outline'. Many companies, com-
munity colleges and various training facilities do offer different in-house technical courses, devel-
oped and conducted by many professionals experienced in the program being presented. This last
chapter offers a general curriculum for a comprehensive Fanuc Custom Macro training course,
based on this handbook. Its purpose is to provide the multitude of important topics necessary to
conduct a successful custom macro training program. The outline is only a suggestion and is
meant to be modified to suit particular training needs. Table of contents at the beginning of this
handbook may help in this respect.

Feel free to adjust the course outline to your needs and fit it to your training schedule. For con-
venience, the text of the outline is also included on the CD that accompanies this handbook.

Macro Course Outline

Course Title: INTRODUCTION TO FANUC CUSTOM MACROS
Duration: 36 - 42 hours

Prerequisites: General knowledge of manual CNC programming,
CNC machining and setup

The typical student is one with a strong knowledge of CNC programming, particularly of
the part program structure, G-codes and M-codes, as well as subprograms - these subjects
will be of most benefit. Knowledge of a high level programming language is helpful but not
necessary. The participating student should also be familiar with the basic operation of a
CNC control panel and general machining practices. On an intellectual level, the student
should be a quick thinker, able to search for solutions to various problems. The student
should also have a strong background in mathematical applications for machine shop.

Course Description and Objective:

This course is the highest levels of CNC Programming training. The student will learn from
the beginning, with progressively more advanced subjects relating to the development of
customized CNC programs (macros). The main objective of the training program is to
familiarize the student with Fanuc macro concepts, their format, structure, as well as the
applications in a typical machine shop.

Starting with a brief review of standard CNC concepts, mainly G-codes, M-codes, and
subprograms, the student will learn how to understand Fanuc macro structure and
develop practical macro applications. The main emphasis of the course will be on correct
programming style and applications development for efficient and productive CNC usage.

One of the most important features of this training program is development of actual
macro routines the student can use upon completion of the training. Training sessions are
designed around various exercises and practical projects the student will be doing.

Access to a control system with the macro option is optional.

301

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

302 Chapter 25

Method of Training:

Only an experienced professional CNC instructor will run this course. All sessions in this
program will be based on guiding the student to solve a problem, rather than presenting
arbitrary solutions. A copy of the comprehensive Fanuc Custom Macros handbook
(published by Industrial Press, Inc.) will be supplied to each student, to be kept for future
reference.

¢ INTRODUCTION TO MACROS

General Introduction

CNC Programming Tools
What is a Macro Programming
Usage of Macros

Groups of Similar Parts
Offset Control

Custom Fixed Cycles

Special G-codes and M-codes
Alarm and Message Generation
Probing and Gauging
Shortcuts and Utilities

I Ty Ty Ty Ay I Ay Ay Ny Ny

¢ BRIEF REVIEW OF PROGRAMMING TOOLS

G-codes and M-codes
Preparatory Commands
Miscellaneous Functions
Default Settings

Modal Values
Programming Format
Rules of Subprograms
Subprogram Nesting

oo ddodd

¢ SYSTEM PARAMETERS

What are Parameters

Binary Numbers

Parameter Classification
Parameter Data Types

Setting and Changing Parameters
Protection of Parameters
Changing Parameters

System Defaults

oo ddodd

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACRO COURSE OUTLINE

303

¢ DATA SETTING

I Ty Ty Ay Ay Ny Ny N N Ny

Data Setting Commands
Coordinate Mode

Work Offsets

Memory Types - Milling and Turning
Geometry Offset

Wear Offset

Adjusting Offsets

Absolute Mode

Incremental Modes

Tool Offset Entry

MDI Data Setting
Programmable Parameter Entry
Modal G10 Command

Effect of Block Numbers

¢ MACRO STRUCTURE

o ddodod

Basic Tools

Variables

Functions and Constants
Logical Operators

Defining and Calling Macros
Macro Definition

Macro Call

Arguments

Macro Program Numbers

¢ CONCEPT OF VARIABLES

Uoududdodd

Types of Macro Variables
Definition of Variables
Variable Declaration
Variable as an Expression
Usage of Variables
Restrictions

Custom Machine Features

¢ ASSIGNING VARIABLES

a
a
a

Local Variables
Assignment Lists
Simple Macro Call

A ETGieer NOBob ks Pefie

304

FANUC CNC Custom Macros

Chapter 25

Uoududdodd

Modal Macro Call

Main Program and Variables

Local Variables and Nesting Levels
Common Variables

Volatile and Non-volatile Groups
Input Range

Protecting Variables

¢ MACRO FUNCTIONS

I Ty Ty Ty Ay Iy Iy Ay Ny N Ny

Function Groups
Definition of Variables
Referencing Variables
Vacant Variables
Arithmetic Functions
Division by Zero
Trigonometric Functions
Rounding Functions
Miscellaneous Functions
Logical Functions
Binary Numbers
Conversion Functions
Evaluation of Functions

¢ SYSTEM VARIABLES

oo ddod

Identifying System Variables

System Variables Groups

Read Only Variables

Read and Write Variables

Displaying System Variables

System Variables for Various Controls
Organization of System Variables
Resetting Program Zero

¢ TOOL OFFSET VARIABLES

| I T I Iy

System Variables and Tool Offsets
Tool Offset Memory Groups

Tool Offsets and the Number of Offsets
Tool Offsets and Control Types

Tool Setting

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

MACRO COURSE OUTLINE

305

¢ MODAL DATA

| I T I Iy

System Variables for Modal Commands
Preceding and Executing Blocks

Modal G-codes

Saving and Restoring Data

Other Modal Codes

¢ BRANCHING AND LOOPING

I Ty Ty Ty Ay Ay Ay Ny N Ny Ay N N

Decisions in Macro Development

IF Function

Conditional Branching
Unconditional Branching

IF-THEN Option

Single Conditional Expressions
Combined Conditional Expressions
Concept of Loops

WHILE Loop Structure

Single Level Nesting Loop

Double Level Loop

Triple Level Loop

Other Conditions

Restriction of the WHILE Loop
Conditional Expressions and Vacant Variables
Clearing 500+ Series of Variables

¢ ALARMS AND TIMERS

ool ddodod

Alarms in Macros

Alarm Number

Alarm Message

Alarm Format

Embedding Alarm in a Macro
Resetting Alarm

Message Variable

Timers in Macros

Time Information

Timing an Event

¢ AXIS POSITION DATA

a
a

Axis Position Terms
Position Information

A ETGieer NOBob ks Pefie

306

FANUC CNC Custom Macros

Chapter 25

¢ AUTOMATIC OPERATIONS

| I T I I Wy

Controlling Automatic Operations

Single Block Control

M-S-T Functions Control

Feedhold, Feedrate and Exact Check Control
Systems Settings

Controlling Number of Machined Parts

¢ PARAMETRIC PROGRAMMING

| I T I Iy

Variable Data

Benefits of Parametric Programming
Families of Similar Parts

Macros for Machining

Macros as Custom Cycles

¢ PROBING WITH MACROS

| I T I Iy

Probing Fundamentals
In-Process Gauging

Part Features Measurement
Calibration Devices

Sample Program Evaluation

Closing Comments

In no way is the presented program outline offered as the best possible course presentation. In
some ways, the outline follows the material in this handbook, but it also deviates from it. Keep in
mind that the handbook has been designed mainly as a reference resource, not a particular course
material. However, the topics presented can serve as excellent source for building a customized
course on Fanuc macros.

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

Index

A

Abbreviations of macro functions 204
ABSfunction 122,284
ABSIOvariables. 193
ABSKPvariableso oo 193
ABSMT variables 193
Absolutemode 59
ABSOTvariables 193
ACOSfunction 116
Additional work offsets L 9,169
ADPfunction. 87,122,124
Agile manufacturing L 49
Alarms and timers 187-192
Alarmformat 188
Alarmgeneration 8
Alarmmessages. 187
Alarmnumbers L 187
Alarmsinmacro. L 188
Resettinganalarm. 190
Timers. 191
Amplitude - Sinecurve Lo 185
ANDfunction 176
Angular hole pattern -version1 221-223
Angular hole pattern - version2 224-225
Archolepattern 233
Arguments. L 7
Arithmetic functions 113
Nesting 113
ASINfunction.o 116
Assigning variableso 93-108
ATAN function.o 116
Auto mode operations. 195-202
Automatic cornerbreako oo 0oL 213
Auxiliary functionso oo oo 196
Axispositondata 193-194
Axistype parameters 43
B
Basic programcodes L. 11-20
Battery powersupplyo 34
Baudrate. 270-271
Baudratesetting 68
BCDfunction 126
BINfunction 126
Binarynumbers. 45,126
Binaryvalues 200
Bit-typedata. 37
Interpreting binary value. 200
Logicalsum. 200
Sumofbitso 45,200
Bit. 45

Locations 38
Bittype parameters L 37
Block numbersearch. 295
Blocknumberso 40,72
Block skip function L. 72,295
Bolthole circle pattern 229
Boole,George 74
Booleanoperators L. 74,124,175
BPRNT function 267-268
Brackets 86, 126
Branchingand looping. 171-186

Conceptofloops. 177

Conditional branching. 172

Counterinloops. 229

GOTOnfunction. 173

IFfuncton 172

Unconditional branching. 173

WHILE function 179
Byte type parameterso 41

C
Calibrationdevices. 288
Centeringmacroexample 289
Circular groove with multiple depth 247
Circular pocket finishing. 240, 260
Circular pocketroughing. 236, 260
CMM 276
Commonvariables 83, 106, 133

Protection 108

Volatile and nonvolatile 106
Conceptofloops. 177
Conceptofvariables 83-92
Conditional branching. 172
Conditional expressions 175-176, 182
Constants 73-74
Controlmodels 138
Control parameters 33
Conversionfunctions 126
Coordinate measuring 276
Coordinate Measuring Machines 276
Coordinatemode 50
Coordinate systemrotation. 9,288
COSfunction 116
Courseoutline. 301
Currentvalue 112
Curves

Approximation. 185

Sinecurve Lo 184
Customfixedcycles 8
Custom machine features. 92
CustomM-codes 12
CycleStart 4

D
Dataoutputfunctions. 268
Datasettings 49-72

307

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

308 Index
Blocknumbers 72 Trigonometric. 116
Glocommand 50 FUPfunction 121,128
MDI . . . 65
Offsets 49
P-address. 67 G
R-address. 67
Zeroingmachineaxes 70

Datumshift 145 GO4command. 12-13,192

Decimal pOint 87, 229 G09command. 12'13, 198

Decimal point in G65 statement. 229 ~ GlOcommand 13,17,50-52, 62, 66-68

Decision making inmacros. 171 Glleommand ... 66, 68

Defaultvalues 11, 33, 47-48, 233 Gl3circlecuttingcycle L 8, 240, 260

Dimensional tolerances 280 G20command 12-13,17

Disallowed addresses gg ~ G2lcommand 1213, 17

Divisionbyzero 115 G3leommand ... 193,293

DNC method. 34 G6lcommand 14,18, 198

Documentation of programs. 29 GGScommand. 5, 14,18, 66,75, 77

DPRNTHUCHON . . . o o v o oo oo oo 267274 G66command . 15,18, 98

Dwellasamacro 192 GB6lcommand ... 98

G67command 15, 18, 98
G68-G69 commands 288
E Gauging 3,49, 275
G-codes 2,10-11
) G-codesformiling 13

Ed!tAmode """"""""""" 296 G-codes for turnin% 16

Bditing mactos 08 Groups Lo 13, 16, 164, 167

Emergencystop 94 Modal commands 164

Emptyvariables 111,182 Three digit G-codes 15

Endlessloops. 178 Typesforturning 16

ENDnfunction. 179 GEfunction. 182

Englishunits. 88 Geometryoffset 8,53, 58, 149

EQfunction. 182 GOTOnfunction. 171

Evaluation of functions 126 Groups of similarparts 7

Exactstop check control. 197 GTfunction. 182

Executingblock 164

EXPfunction 122,124

External output commands. 267-274 H
F Hidingmacros. 9

FALSEvalues 37,125,172, 176, 182 I

Familyofparts. 7,205, 209-220

Fanuccustommacros 1 IFfuncton 171-172, 182

Feedhold control. 197, 296 IF-THEN function 171,174

Feedrate override control 197 Incrementsystem L. 43-44

FIXfunction., 121, 136 Incrementalmode.o 59

Fixedeycles 8 Infiniteloopso 178

Flowchart 177, 208, 300 Infinitevalues 128

Formulasinmacros 134 In-process gauging 3,9, 49, 276-278, 282

Frame hole pattern. 224 Input/Output

Functions. 73-74,109 Interfface 133
Arithmetic 113 Metricand inchformat 270
Availablegroups. L 109 Parametersettings 269-271
Conversion.o 126 Printing ablankline 274
Evaluation 126 Integernumbers 85
Logical. 124 fteration (looping) 30,179, 181
Miscellaneous. 122
Order of evaluation. 128
Practical applicatons 129
Rounding. 117

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

Index 309
Macros formachining 224-254
K Mainprogram. 5,101
Manual Data Input (MDI) 65, 186, 296
Knowledge formacros 297 M-codes . .. LT 2,10
M-codes formilling 15
M-codes fortuming 19
L MDIdatainput 65, 186, 296
Memory
Nonvolatile 106
Latheoffsets. 62 Volatile 106
LEfunction. 124,182 Message generation 8
Leastincrement 88 Metric units 88
Limitations 295 Minimalincrement. 88
LNfunction. 122,124 Mirrorimage status check 199
Localvariables 83,93,129 Miscellaneous functions. 10, 12
Assigning . ..o 94 Modalvalues.o 12
Assignmentlists 94-95, 168 Executingblock 163
Clearing. 94 Glocommand 66
Defining. 93 G-COdES 164
Disallowed addresses 98 M-COdeS 168
Nestinglevels. 105 Modaldata 163-170
Variableasacounter. 229 Modal macrocall 08
Logical functions. 73-74, 124, 175 Precedingblock 163
AND .o 125 Savingandrestoring 167
EQ 124 Systemvariables 163
GE 124 M-S-T functions control 196
GT . . . e 124 Multlple level nesting 2' 27
LE . . o 124
LT . o 124
NE 124
OR 125 N
XOR 125
Looping function 179-181 NEfunction. 182
LTfunction. 182 Negative variables 89
Nestinglevels. 179
Doublelevel 180
M Singlelevel 179
Triplelevel 180
M30function. . . . 16,20, 94, 129 Nonstandardltool motions 8
MoBfunction 16,20,25,75-77 ~ Nonzerovatiable. .. 8
M99 function 16,20,25:26,30,94, 129 NUlvanables. .. 8,111, 182-183
L With arithmetic operations 114
Machining perfformance L. 33 With axis motion ... 111
Macrocall. 'S Number of machined parts. 202
Macrocallby G-code. 256, 262
MacrocallbyM-code. 258
Macrocallcommand. 77 O
Macro definitono 75
Macro execgtion 295 Offsetcontrol . . . 8. 49
Macro functpns """"""""" 109-136 Offsetmemorytypes 53,58
Macroin main program 5 Milingtype A. . . o o 55
Macroprogramming 4 Milingtype B.o 56
Macrostructure L 73-82 MilingtypeC 57
Macro unique features 30 Offsets
Macros Datasetting 49
Calingo 75 Lathe. 62
Courseoutline. 301 Setting adjustments 59
Definiton 75 Tooloffsetentry 60
Documentation. 29 Updatingoffsets 54
Programnumbers. L 78 Validinputrange 62
Protection. 79 Operating restrictions 295
Setting definitions. 79 ORfuUNCtion. o 176
Macros as customeycles L. L 255-266

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

310 Index
Out-of-rangevalues 107 Programnumbers. L. 79
Overflow. 107 Program portability 67
Programmable parameterentry 65
Programming languages 4,7,10,73,171
P Protectingmacros. 9,79
Protection of parameters 46
Parameters Pseudo-code 208, 300
Backup 34,46
Changli)ng 46-47
Classification. 35 R
Datatypes. 37
Definiton 33
Displayscreen 37 RAM 106
Enable and disable mode.. 26 Random Accgss Mgmory 106
GIOUDING .« + o o e e 36 Read and Write variables 138
ldentification 35 Realnumbers 85
Numbering 35 Rectangular pocketmacro. 251
Protection. 46 Redefinition. 112
Relationship 40 Replacing controloptions 9
Saving . .o 34 RESETkey 94, 129, 190, 196-197, 270, 296
Semng_ """ ot e 46 Resettinganalarm. 190
Paéaenr::ftirt': programming. 7 205—582 Resetting programzero 145
pefiiton, |11l Resomgmedaldaa. 167
Planned approach 207 Restrictions. 295
Variable data 205 Returnedvalue 112
PCLOS functiono 267 ROUND function. 117,128
Pifunction. 31 Rounding functions. 117
PMC - Programmab|e Machine Control. 126, 258 ROUnding to number of decimal places 119
Polar coordinates 9 RS-232C 68, 267-269
POPEN function. 267,272
Portclose function 267 S
Portopenfunction 267
Positive variables 89
Poundsymbol 75 Safetyissues 46-47
Precedingblock 164 Savingmodaldata. 167
Preparatory commands 10-11 Scaling function 9
Probecalibration. 277 SETVNfunction 108
Artifact. 277,288 Shorteuts. 9
Feedrateandaccuracy 277 SINfunction 117
Mastergauges 288 Sinecurveexample 184
Probe length calibration 291 Singleblock 205
Prpbe prestravel 277 Single block control. 195-196
Probing 3,7.215 Skills requirements 10
Angle measurement L. 288 Skip command 203
Center measurement 284 o
Definiton. 275 Slot machining macro. 244
Depthmeasurement 287 zpecia: g/dej -------------------- 253
Deviceso 278 pecial G-codes.o
Diameter measurement 287 Special M-codes. 8
Feedrate andaccuracy 277 Special tapping example 198
Inductivetype. 282 Speeds and feeds calculation 134
Length or Width 286 SQRTfunction 74,122
On ,CNC machines. 280 Stylus diametero 284
Optical type. o 281 Subprograms 2
Prope calibration. 277 Brief review oo 21'_32
Radio type . . 282 Documentati;m """"""""" 29
Selectioncriteria. 279 Generalmles ooy 25
Technologytoday 216 T T oottt
TOUCh Probes . . .« . v v o 276 Lat_he example. 31-32
Typesofprobes. 278 M?"'Zf;crﬁlrim and subprogram Zlgg
Prob?ng applications """"""""" 8 Subprogrgm ‘ne.sti‘ng 27
Probingwithmacros 275-294

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

Index 311
Subprogram repetition L L 27 Variables. 73-74
Subprogramsvs.macros. 30, 248 Additon 114

Substitution. 112 Arguments definitons oL L 7

Systemdefaultso 47 ASEXPressions. 86

System parameters. 7,33-48 Common 83,106

Systemvariables 83, 133, 137-146 BZE:QZLE?”I usage. o g;
Alarms. oL 187 CEMCTAUUIL. e e e e i
Automatic operations 195 Bi?/fiigiioﬁr?n """"""""""" 1?3
Axisposition 193 PRI L e e e e
Clear?ng 500+series 186 Inmainprogram. 101
DISPlaing . - B b

anucOfisting. 139 FDRL L e '

Fanuc 10/11/%5 ||St|ng 140 MUItip”C&tiOn 115
Fanuc 16/18/21 listing 141 Hﬁﬁ\faerngm -------------------- gg
Vosstcommands ... 1g Ouommgevabes U 107
Modal G-codes FS-0/16/18/21 165 Positive and negative 89
Modal G-codes FS-10/11/15 166 PFOIEC'[IOD 108
Numberofparts 202 Referencing 110
Organization by numbers 144 Restrictionso 90
Read and Write variables 138 SETVNfunction 108
Systemsettings 199 Substitution. .. 114
Timers. 191 Subtraction. 114
Tooloffsets. 147 System. ... 83

Terminologyused 112

Types . . . 83
T Usage o o 86

TANFUCHON .« . o 116 W

Timeinformation. 191

T!mgrs MMACIOS e e 101 Wait for completionsignal 196

Timinganevent. L earoffset. 8,53, 58, 149

Tolerances . . . 20 WHILEfunction 171, 179-182

Toolnesetippumber 63 WHILE loop restrictions 181

To%ggs:_t ”_‘er_no_'y _gr?uf)s: SRR ﬂg Word type parameters 4
TypeB. . 149 Work c_)f_fsets 51
TweC . . . 149 Additionalo 52

ype) Common 52

Tool offsetvariables 147-162 External. 59
FanucOo 150 Standard 51
Fanuc 10/11/15/16/18/21 152, 158

Toolsetting. 158

Touchprobes. 276 X

Trigonometric functions 116
Conversions to decimal degrees 116]

TRUEvalues 37,125,172,176,182 XORfunction 176

Two-word type parameters 42

Typesofprobes. 278 Z
U Zeroshift. 145

Unconditional branching. 173, 189

Underflowo 107

Usageof macros. 6
V

Vacantvariables. 83,93, 111, 182

Valuetransfer. 137

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

312 Index

A Emgieer MoBob kePefieomr

FANUC CNC Custom Macros

WHAT'S ON THE CD-ROM ?

The included bonus CD-ROM provides an easier access to most programs covered in the book,
including all machining macros and other files, so they can be printed or modified if necessary.
Through the menu selection, choose the item of interest.

& Requirements:
1. Windows XP (Home or Professional edition strongly recommended)

2. CD-ROM drive

3. Adobe Reader version 5 or higher (formerly known as the Acrobat Reader)

& Using the CD-ROM:
1. Insert the CD into the CD-ROM drive
2. The Main Menu should appear automatically
3. Use the Main Menu to navigate through all available options

4. Press the EXIT button to exit CD browsing

& Notes:

If the Main Menu does not appear automatically, the AufoPlay function in Windows XP may
have to be activated. The free utility Adobe Reader v5+ is required to view and print all selected
PDF files from the CD-ROM. If you encounter a difficulty opening any PDF file from the disk,
install the free Adobe Reader version provided on the CD-ROM (uninstalling the older version
may be necessary).

The CD-ROM also includes all the major programs and macros listed throughout the book. Spe-
cifically, the menu selection covers all macros and associated illustrations (drawings) listed in the
Chapter 20 - Macros for Machining, as well as the macro for a special cycle development listed in
Chapter 21 - Custom Cycles.

In addition, other menu selections offer several supplementary resources:

(1 A suggested Fanuc Custom Macro B course outline as a Microsoft Word file

(feel free to modify this file to suit your training needs)

Several drawings usable for macro development are also included

Drawings in the PDF format that can be used as handouts or for classroom exercises
Two probing macros

Other references

I W W

A ETGieer NOBob ks Pefie

FANUC CNC Custom Macros

A Emgieer MoBob kePefieomr

	CNC Programming Library 2
	FANUC CNC Custom Macros
	Front Matter
	Title Page
	Copyright
	Acknowledgments
	About the Author
	Disclaimer
	Preface

	Table of Contents
	1 - FANUC MACROS
	General Introduction
	Review of G-codes, M-codes and Subprograms
	System Parameters
	Data Setting
	Custom Macros
	Probing Applications
	Overall View

	Macro Programming
	Macro Option Check
	What is a Macro Programming?
	Typical Features
	Main Program with Macro Features

	Using Macros
	Groups of Similar Parts
	Offset Control
	Custom Fixed Cycles
	Nonstandard Tool Motions
	Special G-codes and M-codes
	Alarm and Message Generation
	Replacing Control Options
	Hiding and Protecting Macro Programs
	Probing and Gauging
	Various Shortcuts and Utilities

	Skills Requirements

	2 - BASIC PROGRAM CODES
	Preparatory Commands
	Default Settings
	Modal Values
	Programming Format

	Miscellaneous Functions
	Programming Format
	M-codes with a Motion
	Custom M-codes
	Reference Tables

	G-codes for Milling
	Three-Digit G-codes

	M-codes for Milling
	G-codes for Turning
	M-codes for Turning
	Standard Program Codes
	Optional Program Codes

	3 - REVIEW OF SUBPROGRAMS
	Subprogram Example - Mill
	Rules of Subprograms
	Subprogram Repetition
	Subprogram Nesting
	Subprogram Documentation

	Subprograms vs. Macros
	Unique Features

	CNC Lathe Applications
	Subprogram Development

	4 - SYSTEM PARAMETERS
	What are Parameters ?
	Saving Parameters
	Backing Up Parameters

	Parameter Identification
	Numbering of Parameters

	Parameter Classification
	Parameters Grouping

	Parameter Display Screen
	Parameter Data Types
	Bit-Type Data Type
	Relationship of Parameters
	Byte Data Type
	Word Data Type
	2-Word Data Type
	Axis Data Type
	Important Observations

	Binary Numbers
	Setting and Changing Parameters
	Protection of Parameters
	Battery Backup
	Changing Parameters

	System Defaults
	Default Values Settings

	5 - DATA SETTING
	Input of Offsets
	Data Setting Command
	Coordinate Mode
	Absolute Mode
	Incremental Mode

	Work Offsets
	Standard Work Offset Input
	Additional Work Offset Input
	External Work Offset Input

	Offset Memory Types - Milling
	Geometry Offset
	Wear Offset
	Which Offset to Update?
	Memory Type A
	Memory Type B
	Memory Type C
	Memory Type and Macros

	Offset Memory Types - Turning
	Adjusting Offset Values
	Absolute Mode
	Incremental Mode

	Tool Offset Program Entry
	L-Address
	G10 Offset Data Settings - Milling Examples

	Valid Input Range
	Lathe Offsets
	P-Offset Number
	Tip Number Q
	G10 Offset Data Settings - Turning Examples

	Data Setting Check in MDI
	Programmable Parameter Entry
	Modal G10 Command
	N-address in G10 L50 Mode
	P-address in G10 L50 Mode
	R-address in G10 L50 Mode

	Program Portability
	Setting Machine Axes to Zero
	Bit Type Parameter Example
	Differences Between Control Models
	Effect of Block Numbers
	Block Skip

	6 - MACRO STRUCTURE
	Basic Tools
	Variables
	Functions and Constants
	Logical Functions

	Defining and Calling Macros
	Macro Definition
	Macro Call
	Arguments
	Visual Representation

	Macro Program Numbers
	Macro Program Protection
	Setting Definitions
	Program Numbers - Range O0001 to O7999
	Program Numbers - Range O8000 to O8999
	Program Numbers - Range O9000 to O9999
	Program Numbers - Range O9000 to O9049
	Difference Between the O8000 and O9000 Program Numbers

	7 - CONCEPT OF VARIABLES
	Types of Macro Variables
	Variables in Macros
	Definition of Variables
	Calculator Analogy
	Variable Data

	Variable Declaration
	Real Numbers and Integers
	Variable as an Expression

	Usage of Variables
	Decimal Point Usage
	Metric and English Units
	Least Increment
	Positive and Negative Variables
	Syntax Errors
	Restrictions

	Custom Machine Features

	8 - ASSIGNING VARIABLES
	Local Variables
	Defining Variables
	Clearing Local Variables

	Assigning Local Variables
	Assignment List 1 - Method 1
	Assignment List 2 - Method 2
	Missing Addresses
	Disallowed Addresses

	Simple and Modal Macro Calls
	Selection of Variables

	Main Program and Local Variables
	Local Variables and Nesting Levels
	Common Variables
	Volatile and Nonvolatile Memory Groups

	Input Range of Variables
	Out-of-Range Values
	Calculator Analogy

	Set Variable Name Function SETVN
	Protection of Common Variables

	9 - MACRO FUNCTIONS
	Function Groups
	Definition of Variables Revisited
	Referencing Variables
	Vacant or Empty Variables
	Axis Motion Commands and Null Variables
	Terminology

	Arithmetic Functions
	Nesting
	Arithmetic Operations and Vacant Variables
	Division by Zero

	Trigonometric Functions
	Conversion to Decimal Degrees
	Available Functions

	Rounding Functions
	Rounding to a Fixed Number of Decimal Places
	FUP and FIX Functions

	Miscellaneous Functions
	SQRT and ABS Functions
	LN, EXP and ADP Functions

	Logical Functions
	Boolean Functions
	Binary Numbers Functions
	Boolean and Binary Examples

	Conversion Functions
	Evaluation of Functions - Special Test
	Order of Function Evaluation

	Approach to Practical Applications
	Using Local Variables
	Using Common Variables
	Speeds and Feeds Calculation

	10 - SYSTEM VARIABLES
	Identifying System Variables
	System Variables Groups
	Read and Write Variables
	Displaying System Variables
	System Variables for Fanuc Series 0
	Fanuc Model 0 Compared to Other Models
	System Variables for Fanuc Series 10/11/15
	System Variables for Fanuc Series 16/18/21

	Organization of System Variables
	Resetting Program Zero

	11 - TOOL OFFSET VARIABLES
	System Variables and Tool Offsets
	Tool Offset Memory Groups
	Tool Offset Memory - Type A
	Tool Offset Memory - Type B
	Tool Offset Memory - Type C

	Tool Offset Variables - Fanuc 0 Controls
	Milling Control FS-0M
	Turning Control - FS-0T

	Tool Offset Variables - FS 10/11/15/16/18/21 for Milling
	Assignments for 200 Offsets or Less - Memory Type A
	Assignments for 200 Offsets or Less - Memory Type B
	Assignments for 200 Offsets or Less - Memory Type C
	Assignments for More than 200 Offsets - Memory Type A
	Assignments for More Than 200 Offsets - Memory Type B
	Assignments for More than 200 Offsets - Memory Type C

	Tool Offset Variables - FS 10/11/15/16/18/21 for Turning
	Tool Setting
	Assignments for 64 Offsets or Less - Memory Type A
	Assignments for 64 Offsets or Less - Memory Type B
	Assignments for More than 64 Offsets - Memory Type A
	Assignments for More than 64 Offsets - Memory Type B

	12 - MODAL DATA
	System Variables for Modal Commands
	Fanuc 0/16/18/21 Modal Information
	Fanuc 10/11/15 Modal Information
	Preceding and Executing Blocks

	Modal G-codes
	Fanuc 0/16/18/21
	Fanuc 10/11/15

	Saving and Restoring Data
	Saving Modal Data
	Restoring Modal Data

	Other Modal Functions
	Fanuc 0/16/18/21
	Fanuc 10/11/15

	13 - BRANCHES AND LOOPS
	Decision Making in Macros 171
	IF Function 172
	Conditional Branching 172
	Unconditional Branching 173
	IF-THEN Option 174
	Single Conditional Expressions 175
	Combined Conditional Expressions 176

	Concept of Loops 177
	Single Process 177
	Multiple Process 177

	WHILE Loop Structure 179
	Single Level Nesting Loop 179
	Double Level Loop 180
	Triple Level Loop 180
	General Considerations 181
	Restrictions of the WHILE Loop 181

	Conditional Expressions and Null Variables 182
	Formula Based Macro - Sine Curve 184
	Clearing Common Variables 186

	14 - ALARMS AND TIMERS
	Alarms in Macros
	Alarm Number
	Alarm Message
	Alarm Format
	Embedding Alarm in a Macro
	Resetting an Alarm
	Message Variable - Warning, Not an Alarm

	Timers in Macros
	Time Information
	Timing an Event
	Dwell as a Macro

	15 - AXIS POSITION DATA
	Axis Position Terms
	Position Information

	16 - AUTO MODE OPERATIONS
	Controlling Automatic Operations
	Single Block Control
	M-S-T Functions Control
	Feedhold, Feedrate, and Exact Check Control
	Example of Special Tapping Operation
	Systems Settings

	Mirror Image Status Check
	Interpreting System Variable #3007

	Controlling the Number of Machined Parts

	17 - EDITING MACROS
	Editing Units
	Program Comments
	Abbreviations of Macro Functions

	18 - PARAMETRIC PROGRAMMING
	What is a Parametric Programming ?
	Variable Data

	Benefits of Parametric Programming
	When to Program Parametrically

	Planned Approach to Macro Development

	19 - FAMILY OF SIMILAR PARTS
	Macro Development in Depth - Location Pin
	Drawing Evaluation
	Objective of the Macro
	Part Setup, Tooling and Machining Method
	Drawing Sketch
	Standard Program
	Identify Variable Data
	Creating Arguments
	Using Variables
	Writing the Macro
	Final Version
	Macro Improvements

	20 - MACROS FOR MACHINING
	Angular Hole Pattern - Version 1
	Variable Data for Angular Hole Pattern

	Angular Hole Pattern - Version 2
	Frame Hole Pattern
	Variable Data for Frame Hole Pattern

	Bolt Hole Circle Pattern
	Variable Data for Bolt Hole Circle Pattern

	Arc Hole Pattern
	Variable Data for Arc Hole Pattern

	Circular Pocket Roughing
	Variable Data for Circular Pocket Roughing
	Amount of Stock Left

	Circular Pocket Finishing
	Variable Data for Circular Pocket Finishing

	Slot Machining Macro
	Variable Data for Slot Machining

	Circular Groove with Multiple Depth
	From Subprograms to Macros
	Macro Version Development

	Rectangular Pocket Finishing

	21 - CUSTOM CYCLES
	Special Cycles
	Options Available

	G-code Macro Call
	M-functions Macro Call
	G13 Circle Cutting Cycle
	Macro Call - Normal
	Macro Call - as a Special Cycle
	Detailed Evaluation of Offset Value
	Counterboring Application

	22 - EXTERNAL OUTPUT
	Port Open and Port Close Commands
	Data Output Functions
	BPRNT Function Description
	DPRNT Function Description

	Parameter Settings - Fanuc 10/11/12/15
	Metric vs. Inch Format

	Parameter Settings - Fanuc 16/18/21
	Structure of External Output Functions
	Output Examples
	Blank Output Line
	Columns Formatting

	DPRNT Practical Examples
	Date 274
	Time 274
	Work Offset 274

	23 - PROBING WITH MACROS
	What is Probing ?
	Touch Probes
	Probing Technology Today
	Probe Calibration
	Feedrate and Probing Accuracy

	Probing Devices on CNC Machines
	In-Process Gauging Benefits

	Types of Probes
	Probe Size

	Probe Selection Criteria
	Machined Part
	Control System Capabilities
	Expected Tolerances
	Additional and Optional Features
	Associated Costs

	CNC Machine Probe Technology
	Optical Signal Transmission
	Inductive Signal Transmission
	Radio Signal Transmission

	In-Process Gauging
	Features to be Measured
	Center Location Measurement
	Measuring External or Internal Width
	Measuring Depth
	Measuring External Diameter
	Measuring Internal Diameter
	Measuring Angles
	Changing of Set Values

	Calibration Devices
	Calibrating device - Type 1
	Calibrating device - Type 2
	Checking the Calibration Device

	Centering Macro Example
	Probe Length Calibration
	Skip Command G31

	24 - ADDITIONAL RESOURCES
	Limitations During Macro Execution
	Single Block Setting
	Block Number Search
	Block Skip Function
	MDI Operation
	Edit Mode
	Control Reset
	Feedhold Switch

	Knowledge for Macro Programming
	General Skills
	Manual Programming Experience
	Math Applications
	Setup Practices
	Machining Practices
	Control and Machine Operation

	Complementary Resources
	Industrial Press, Inc.
	Internet

	Practical Programming Approach
	Macro Programming Tips

	25 - MACRO COURSE OUTLINE
	Macro Course Outline
	Closing Comments
	Index

	27 - WHAT'S ON THE CD-ROM ?
	Open Supplimental CD

	Index
	A
	Abbreviations of macro functions 204
	ABS function 122, 284
	ABSIO variables 193
	ABSKP variables 193
	ABSMT variables 193
	Absolute mode 59
	ABSOT variables 193
	ACOS function 116
	Additional work offsets 9, 169
	ADP function 87, 122, 124
	Agile manufacturing 49
	Alarms and timers 187-192
	Alarm format 188
	Alarm generation 8
	Alarm messages 187
	Alarm numbers 187
	Alarms in macro 188
	Resetting an alarm 190
	Timers 191

	Amplitude - Sine curve 185
	AND function 176
	Angular hole pattern - version 1 221-223
	Angular hole pattern - version 2 224-225
	Arc hole pattern 233
	Arguments 77
	Arithmetic functions 113
	Nesting 113

	ASIN function 116
	Assigning variables 93-108
	ATAN function 116
	Auto mode operations 195-202
	Automatic cornerbreak 213
	Auxiliary functions 196
	Axis position data 193-194
	Axis type parameters 43

	B
	Basic program codes 11-20
	Battery power supply 34
	Baud rate 270-271
	Baud rate setting 68
	BCD function 126
	BIN function 126
	Binary numbers 45, 126
	Binary values 200
	Bit-type data 37
	Interpreting binary value 200
	Logical sum 200
	Sum of bits 45, 200

	Bit 45
	Locations 38

	Bit type parameters 37
	Block number search 295
	Block numbers 40, 72
	Block skip function 72, 295
	Bolt hole circle pattern 229
	Boole, George 74
	Boolean operators 74, 124, 175
	BPRNT function 267-268
	Brackets 86, 126
	Branching and looping 171-186
	Concept of loops 177
	Conditional branching 172
	Counter in loops 229
	GOTOn function 173
	IF function 172
	Unconditional branching 173
	WHILE function 179

	Byte type parameters 41

	C
	Calibration devices 288
	Centering macro example 289
	Circular groove with multiple depth 247
	Circular pocket finishing 240, 260
	Circular pocket roughing 236, 260
	CMM 276
	Common variables 83, 106, 133
	Protection 108
	Volatile and nonvolatile 106

	Concept of loops 177
	Concept of variables 83-92
	Conditional branching 172
	Conditional expressions 175-176, 182
	Constants 73-74
	Control models 138
	Control parameters 33
	Conversion functions 126
	Coordinate measuring 276
	Coordinate Measuring Machines 276
	Coordinate mode 50
	Coordinate system rotation 9, 288
	COS function 116
	Course outline 301
	Current value 112
	Curves
	Approximation 185
	Sine curve 184

	Custom fixed cycles 8
	Custom machine features 92
	Custom M-codes 12
	Cycle Start 4

	D
	Data output functions 268
	Data settings 49-72
	Block numbers 72
	G10 command 50
	MDI 65
	Offsets 49
	P-address 67
	R-address 67
	Zeroing machine axes 70

	Datum shift 145
	Decimal point 87, 229
	Decimal point in G65 statement 229
	Decision making in macros 171
	Default values 11, 33, 47-48, 233
	Dimensional tolerances 280
	Disallowed addresses 98
	Division by zero 115
	DNC method 34
	Documentation of programs 29
	DPRNT function 267-274
	Dwell as a macro 192

	E
	Edit mode 296
	Editing macros 203
	Emergency stop 94
	Empty variables 111, 182
	Endless loops 178
	ENDn function 179
	English units 88
	EQ function 182
	Evaluation of functions 126
	Exact stop check control 197
	Executing block 164
	EXP function 122, 124
	External output commands 267-274

	F
	FALSE values 37, 125, 172, 176, 182
	Family of parts 7, 205, 209-220
	Fanuc custom macros 1
	Feedhold control 197, 296
	Feedrate override control 197
	FIX function 121, 136
	Fixed cycles 8
	Flowchart 177, 208, 300
	Formulas in macros 134
	Frame hole pattern 224
	Functions 73-74, 109
	Arithmetic 113
	Available groups 109
	Conversion 126
	Evaluation 126
	Logical 124
	Miscellaneous 122
	Order of evaluation 128
	Practical applications 129
	Rounding 117
	Trigonometric 116

	FUP function 121, 128

	G
	G04 command 12-13, 192
	G09 command 12-13, 198
	G10 command 13, 17, 50-52, 62, 66-68
	G11 command 66, 68
	G13 circle cutting cycle 8, 240, 260
	G20 command 12-13, 17
	G21 command 12-13, 17
	G31 command 193, 293
	G61 command 14, 18, 198
	G65 command 5, 14, 18, 66, 75, 77
	G66 command 15, 18, 98
	G66.1 command 98
	G67 command 15, 18, 98
	G68-G69 commands 288
	Gauging 3, 49, 275
	G-codes 2, 10-11
	G-codes for milling 13
	G-codes for turning 16
	Groups 13, 16, 164, 167
	Modal commands 164
	Three digit G-codes 15
	Types for turning 16

	GE function 182
	Geometry offset 8, 53, 58, 149
	GOTOn function 171
	Groups of similar parts 7
	GT function 182

	H
	Hiding macros 9

	I
	IF function 171-172, 182
	IF-THEN function 171, 174
	Increment system 43-44
	Incremental mode 59
	Infinite loops 178
	Infinite values 128
	In-process gauging 3, 9, 49, 276-278, 282
	Input/Output
	Interface 133
	Metric and inch format 270
	Parameter settings 269-271
	Printing a blank line 274

	Integer numbers 85
	Iteration (looping) 30, 179, 181

	K
	Knowledge for macros 297

	L
	Lathe offsets 62
	LE function 124, 182
	Least increment 88
	Limitations 295
	LN function 122, 124
	Local variables 83, 93, 129
	Assigning 94
	Assignment lists 94-95, 168
	Clearing 94
	Defining 93
	Disallowed addresses 98
	Nesting levels 105
	Variable as a counter 229

	Logical functions 73-74, 124, 175
	AND 125
	EQ 124
	GE 124
	GT 124
	LE 124
	LT 124
	NE 124
	OR 125
	XOR 125

	Looping function 179-181
	LT function 182

	M
	M30 function 16, 20, 94, 129
	M98 function 16, 20, 25, 75-77
	M99 function 16, 20, 25-26, 30, 94, 129
	Machining performance 33
	Macro call 75
	Macro call by G-code 256, 262
	Macro call by M-code 258
	Macro call command 77
	Macro definition 75
	Macro execution 295
	Macro functions 109-136
	Macro in main program 5
	Macro programming 4
	Macro structure 73-82
	Macro unique features 30
	Macros
	Calling 75
	Course outline 301
	Definition 75
	Documentation 29
	Program numbers 78
	Protection 79
	Setting definitions 79

	Macros as custom cycles 255-266
	Macros for machining 224-254
	Main program 5, 101
	Manual Data Input (MDI) 65, 186, 296
	M-codes 2, 10
	M-codes for milling 15
	M-codes for turning 19

	MDI data input 65, 186, 296
	Memory
	Nonvolatile 106
	Volatile 106

	Message generation 8
	Metric units 88
	Minimal increment 88
	Mirror image status check 199
	Miscellaneous functions 10, 12
	Modal values 12
	Executing block 163
	G10 command 66
	G-codes 164
	M-codes 168
	Modal data 163-170
	Modal macro call 98
	Preceding block 163
	Saving and restoring 167
	System variables 163

	M-S-T functions control 196
	Multiple level nesting 2, 27

	N
	NE function 182
	Negative variables 89
	Nesting levels 179
	Double level 180
	Single level 179
	Triple level 180

	Nonstandard tool motions 8
	Non-zero variable 89
	Null variables 83, 111, 182-183
	With arithmetic operations 114
	With axis motion 111

	Number of machined parts 202

	O
	Offset control 8, 49
	Offset memory types 53, 58
	Milling type A 55
	Milling type B 56
	Milling type C 57

	Offsets
	Data setting 49
	Lathe 62
	Setting adjustments 59
	Tool offset entry 60
	Updating offsets 54
	Valid input range 62

	Operating restrictions 295
	OR function 176
	Out-of-range values 107
	Overflow 107

	P
	Parameters
	Backup 34, 46
	Changing 46-47
	Classification 35
	Data types 37
	Definition 33
	Display screen 37
	Enable and disable mode 46
	Grouping 36
	Identification 35
	Numbering 35
	Protection 46
	Relationship 40
	Saving 34
	Setting 46

	Parametric programming 7, 205-254
	Benefits 206
	Definition 205
	Planned approach 207
	Variable data 205

	PCLOS function 267
	Pi function 31
	PMC - Programmable Machine Control 126, 258
	Polar coordinates 9
	POPEN function 267, 272
	Port close function 267
	Port open function 267
	Positive variables 89
	Pound symbol 75
	Preceding block 164
	Preparatory commands 10-11
	Probe calibration 277
	Artifact 277, 288
	Feedrate and accuracy 277
	Master gauges 288
	Probe length calibration 291
	Probe pre-travel 277

	Probing 3, 7, 275
	Angle measurement 288
	Center measurement 284
	Definition 275
	Depth measurement 287
	Devices 278
	Diameter measurement 287
	Feedrate and accuracy 277
	Inductive type 282
	Length or width 286
	On CNC machines 280
	Optical type 281
	Probe calibration 277
	Radio type 282
	Selection criteria 279
	Technology today 276
	Touch probes 276
	Types of probes 278

	Probing applications 3
	Probing with macros 275-294
	Program numbers 79
	Program portability 67
	Programmable parameter entry 65
	Programming languages 4, 7, 10, 73, 171
	Protecting macros 9, 79
	Protection of parameters 46
	Pseudo-code 208, 300

	R
	RAM 106
	Random Access Memory 106
	Read and Write variables 138
	Real numbers 85
	Rectangular pocket macro 251
	Redefinition 112
	Replacing control options 9
	RESET key 94, 129, 190, 196-197, 270, 296
	Resetting an alarm 190
	Resetting program zero 145
	Restoring modal data 167
	Restrictions 295
	Returned value 112
	ROUND function 117, 128
	Rounding functions 117
	Rounding to number of decimal places 119
	RS-232C 68, 267-269

	S
	Safety issues 46-47
	Saving modal data 167
	Scaling function 9
	SETVN function 108
	Shortcuts 9
	SIN function 117
	Sine curve example 184
	Single block 295
	Single block control 195-196
	Skills requirements 10
	Skip command 293
	Slot machining macro 244
	Special cycles 255
	Special G-codes 8
	Special M-codes 8
	Special tapping example 198
	Speeds and feeds calculation 134
	SQRT function 74, 122
	Stylus diameter 284
	Subprograms 2
	Brief review 21-32
	Documentation 29
	General rules 25
	Lathe example 31-32
	Main program and subprogram 26
	Mill example 21-25
	Subprogram nesting 27
	Subprogram repetition 27
	Subprograms vs. macros 30, 248

	Substitution 112
	System defaults 47
	System parameters 7, 33-48
	System variables 83, 133, 137-146
	Alarms 187
	Automatic operations 195
	Axis position 193
	Clearing 500+ series 186
	Displaying 138
	Fanuc 0 listing 139
	Fanuc 10/11/15 listing 140
	Fanuc 16/18/21 listing 141
	Groups 138
	Modal commands 163
	Modal G-codes FS-0/16/18/21 165
	Modal G-codes FS-10/11/15 166
	Number of parts 202
	Organization by numbers 144
	Read and Write variables 138
	System settings 199
	Timers 191
	Tool offsets 147

	T
	TAN function 116
	Time information 191
	Timers in macros 191
	Timing an event 191
	Tolerances 280
	Tool nose tip number 63
	Tool offset memory groups 148
	Type A 148
	Type B 149
	Type C 149

	Tool offset variables 147-162
	Fanuc 0 150
	Fanuc 10/11/15/16/18/21 152, 158

	Tool setting 158
	Touch probes 276
	Trigonometric functions 116
	Conversions to decimal degrees 116

	TRUE values 37, 125, 172, 176, 182
	Two-word type parameters 42
	Types of probes 278

	U
	Unconditional branching 173, 189
	Underflow 107
	Usage of macros 6

	V
	Vacant variables 83, 93, 111, 182
	Value transfer 137
	Variables 73-74
	Addition 114
	Arguments definitions 77
	As expressions 86
	Common 83, 106
	Decimal point usage 87
	Declaration 85, 87
	Definition 84
	Division 115
	In main program 101
	Input range 107
	Local 83, 93
	Multiplication 115
	Non-zero 89
	Null variable 83
	Out-of-range values 107
	Positive and negative 89
	Protection 108
	Referencing 110
	Restrictions 90
	SETVN function 108
	Substitution 114
	Subtraction 114
	System 83
	Terminology used 112
	Types 83
	Usage 86

	W
	Wait for completion signal 196
	Wear offset 8, 53, 58, 149
	WHILE function 171, 179-182
	WHILE loop restrictions 181
	Word type parameters 42
	Work offsets 51
	Additional 52
	Common 52
	External 52
	Standard 51

	X
	XOR function 176

	Z
	Zero shift 145

